YOLOv4 与 ORB 深度融合的绝缘子识别定位研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391;TN911. 73

基金项目:


Research on insulator identification and location based on deep fusion of YOLOv4 and ORB
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决复杂背景下铁路接触网绝缘子的快速准确识别及定位问题,提出了一种 YOLOv4 目标检测算法和 ORB 特征 匹配算法深度融合的绝缘子识别定位方法。 首先利用迁移学习的策略训练 YOLOv4 检测网络,解决了绝缘子数据集样本较少 导致过拟合的问题;然后采用高斯金字塔提取图像多尺度特征,使原始 ORB 算法具备尺度不变性;最后将以上两种算法融合, 在双目相机获取的图像上标出绝缘子识别框,并在左右图像识别框内提取特征点进行匹配,利用视差原理还原出绝缘子相对于 相机的三维坐标。 实验结果表明,该方法可以有效地避免复杂背景干扰,准确地定位出绝缘子的三维坐标,4 m 内最大定位误 差为 2. 1%,检测速度为 35 fps,具有较高的精确性和实时性。

    Abstract:

    In order to achieve rapid and accurate recognition and location of insulators for the railway catenary, an insulator recognition and location approach was proposed through deep integrating the YOLOv4 target detection algorithm with the ORB feature matching algorithm under the complicated background. To begin with, the transfer learning strategy was adopted to train the YOLOv4 detection network with an objective of addressing the overfitting problem resulted from few insulator data sets. Then, image multi-scale features were extracted using Gaussian pyramid. By doing so, the original ORB algorithm is equipped with scale invariance; Finally, the insulator recognition frame was marked on the image acquired by a binocular camera by integrating the above two algorithms. On this basis, the three-dimensional coordinates of the insulator relative to the camera can be restored with the parallax principle upon extracting feature points in the left and right image recognition frames for matching. Experimental results demonstrate that the proposed approach featuring high precision and real-time performance can accurately locate the three-dimensional coordinates of the insulator through effectively preventing complex background interference. The maximum positioning error within 4 meters is 2. 1%, and the detection speed is 35 fps.

    参考文献
    相似文献
    引证文献
引用本文

廖国庆,吴文海,曾鑫鹏. YOLOv4 与 ORB 深度融合的绝缘子识别定位研究[J].电子测量与仪器学报,2022,36(2):131-138

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码