基于迁移学习多层级融合的运动想象 EEG 辨识算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391;TN911

基金项目:

陕西省科技计划项目(2019GY090)、咸阳市科技计划项目(2017K0206)资助


EEG identification algorithm of motor imagination based on multi-level fusion of transfer learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了准确获取运动想象脑电信号的全局特征和个体间的共性特征,进而提高其分类准确率和模型鲁棒性,提出一种参 数共享迁移学习的融合卷积神经网络算法。 首先把源域上训练完成的网络逐层迁移至目标网络以获取最佳迁移层。 其次,在 迁移层后分别连接不同数量的卷积-池化块构成 4 个不同深度的卷积网络,并将其并行融合后连接分类器得到分类结果。 利用 BCI 竞赛 IV Datasets 2a 对提出方法进行实验分析。 结果显示,使用 100%和 50%样本时所有受试者的平均辨识率分别为 80. 85%和 78. 9%,验证了提出方法在全局特征提取上的有效性小样本问题上的优势。

    Abstract:

    In order to accurately obtain the global characteristics of motor imaging EEG signals and the common characteristics between individuals, and then improve its classification accuracy and model robustness, a fusion convolutional neural network algorithm with parameter sharing transfer learning is proposed. First, the trained model on the source domain is migrated layer by layer to the target network to obtain the best migration layers. Secondly, after the migration layers, different numbers of convolution-pooling blocks are connected to form four convolutional networks with different depths, and they are merged in parallel and finally the classification results are obtained through the classifier. Use the BCI competition IV Datasets 2a to conduct experimental analysis on the proposed method. The results show that the average recognition rate of all subjects when using 100% and 50% samples is 80. 85% and 78. 9%, respectively, which verifies the effectiveness of the proposed method on global feature extraction and the advantages of small sample problems.

    参考文献
    相似文献
    引证文献
引用本文

周 强,田鹏飞.基于迁移学习多层级融合的运动想象 EEG 辨识算法[J].电子测量与仪器学报,2021,35(12):174-181

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-27
  • 出版日期:
文章二维码