基于交叉自编码网络的故障漏电电流分离方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM72;TN0

基金项目:

国网湖北省电力有限公司科技项目(52153220001V)资助


Fault leakage current separation method basedon cross auto encoder network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    从剩余电流中分离故障支路电流是典型的新数据预测问题,目前故障支路电流分离方法匮乏且准确度较低。本文提出一种小规模交叉自编码深度网络模型构建策略,并将其用于剩余电流中准确分离故障支路电流。首先,在剩余电流和故障漏电电流数据集上分别独立训练自动编码网络;然后,截取剩余电流数据集的特征编码模块和故障漏电电流数据集的特征解码模块,将两者级联构成交叉自编码网络;最后,采用成对剩余电流故障漏电电流数据微调训练交叉自编码网络,获得剩余电流到故障漏电电流的分离映射模型。误差阈值设置为5时,分离平均准确率达7733%;误差阈值为15时,平均准确率达8867%,能较好地实现了故障漏电电流分离,为智能化电流分离式剩余电流保护器设计提供了技术支持。

    Abstract:

    Accurate separation of fault leakage current from residual current was a typical new data prediction problem, the methods of fault leakage current separation were scarce and the accuracy was low. In this paper, we proposed a construction strategy of small scale cross auto encoder deep network, and applied the model to separate fault leakage current from the residual current. First, two independent auto encoder networks were learned on the residual current dataset and the fault leakage current dataset respectively. Then, the feature encoding module of residual current and the feature decoding module of fault leakage current were cascaded to form a cross auto encoder network. Finally, separation mapping model of residual current to fault leakage current was obtained by using the paired residual current and fault leakage current for finetuning training of the crossauto encoder network. Experiment results showed that the average separation accuracy was 7733% when the error threshold was set to 5. When the error threshold was 15, the accuracy was up to 8867%. Obviously, the method can realize the separation of fault leakage current and provide the technical support for the design of intelligent current separation residual current protection device.

    参考文献
    相似文献
    引证文献
引用本文

杨帆,宿磊,沈煜,徐丙垠,薛永端,王玮,邹国锋.基于交叉自编码网络的故障漏电电流分离方法[J].电子测量与仪器学报,2021,35(11):185-193

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-08
  • 出版日期:
文章二维码