摘要:针对普通商品识别算法在智能售货柜嵌入式系统平台上检测速度慢、识别率低的问题,提出了一种在 YOLOv3 基础上 的改进型商品识别算法 DS_YOLOv3。 利用 k-means++聚类算法得到适应于售货柜中售卖饮料图像数据的先验框;采用深度可 分离卷积替换标准卷积,并加入倒置残差模块重构 YOLOv3 算法,减少了计算复杂度使其能在嵌入式平台实时检测;同时引入 CIoU 作为边界框回归损失函数,提高目标图像定位精度,实现了对传统 YOLOv3 算法的改进。 在计算机工作站和 Jeston Xavier NX 嵌入式平台上进行了典型场景下的商品检测实验。 实验结果表明,DS_YOLOv3 算法 mAP 达到了 96. 73%,在 Jeston Xavier NX 平台上实际检测的速率为 20. 34 fps,满足了基于嵌入式系统平台的智能售货柜对实时性和商品识别精度的要求。