基于深度学习的天然气管道气体压力 超声检测模式识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TB551;TN06

基金项目:

四川省科技支撑项目(2017FZ0033)资助


Ultrasonic detection pattern recognition method for natural gas pipeline gas pressure based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对天然气管道气体压力超声检测模式识别问题,提出了对原始信号进行预处理去除冗余信息,然后对信号进行变分 模态分解(variational modal decomposition,VMD)提取最优本征模态函数(intrinsic model functin,IMF)对信号进行重构,接着对处 理好的信号进行连续小波变换(continuous wavelet transform,CWT)使其成为高分辨的时频域 2 维图,最后用深度卷积神经网络 (Deep convolution neural network,DCNN)对图片进行特征提取并将部分网络输出和支持向量机( support vector machine,SVM)相 连实现有监督的学习和训练并用训练好的支持向量机对剩下的数据进行无监督的模式识别。 实验表明,VMD-CNN-SVM 模型 对压力有无的判别准确率为 90. 66%,相较于其他方法准确率最高。

    Abstract:

    In order to solve the problem of pattern recognition of gas pressure detection in natural gas pipeline, the original signal is preprocessed to remove redundant information, and then the signal is decomposed by variational mode decomposition to extract the optimal Intrinsic mode function and reconstruct the signal. Then, the processed signal is transformed into a high-resolution twodimensional image in time and frequency domain by continuous wavelet transform. Finally, the image is extracted by deep convolution neural network, and the output of part of the network is connected with support vector machine to realize supervised learning and training. The trained support vector machine is used for unsupervised pattern recognition of the remaining data. Experiments show that the accuracy of vmd-cnn-svm is 90. 66%, which is the highest compared with other methods.

    参考文献
    相似文献
    引证文献
引用本文

邓 勇,曹 敏,赖治屹.基于深度学习的天然气管道气体压力 超声检测模式识别方法[J].电子测量与仪器学报,2021,35(10):176-183

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-27
  • 出版日期:
文章二维码