摘要:针对复杂环境中目标工件跟踪精度不高的问题,提出了一种基于 ECO 改进的目标工件跟踪方法。 首先基于 ECO 相关 滤波器框架,采用 VGG 特征与传统手工特征加权融合的方法,有效提高目标工件跟踪精度;然后,利用快速判别尺度空间跟踪 器实现对目标工件的尺度自适应跟踪;最后,引入一种高置信度更新指标确定跟踪模型的稀疏更新策略,提高算法鲁棒性。 在 OTB-2015 标准数据集上进行测试,并与其他主流跟踪算法进行对比,实验结果表明,该算法的平均跟踪精度和平均重叠精度均 为最优,分别达到 89. 2%和 68. 6%;对于使用 CCD 工业相机拍摄的目标工件数据集,同样具备良好的跟踪性能,进一步验证了 算法有效性。