ECO 多特征融合目标工件跟踪方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4;TN911. 73

基金项目:

陕西省科技厅项目(2018GY173)、西安市科技局项目(GXYD75)资助


Research on target work-piece tracking method based on ECO multi-feature fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂环境中目标工件跟踪精度不高的问题,提出了一种基于 ECO 改进的目标工件跟踪方法。 首先基于 ECO 相关 滤波器框架,采用 VGG 特征与传统手工特征加权融合的方法,有效提高目标工件跟踪精度;然后,利用快速判别尺度空间跟踪 器实现对目标工件的尺度自适应跟踪;最后,引入一种高置信度更新指标确定跟踪模型的稀疏更新策略,提高算法鲁棒性。 在 OTB-2015 标准数据集上进行测试,并与其他主流跟踪算法进行对比,实验结果表明,该算法的平均跟踪精度和平均重叠精度均 为最优,分别达到 89. 2%和 68. 6%;对于使用 CCD 工业相机拍摄的目标工件数据集,同样具备良好的跟踪性能,进一步验证了 算法有效性。

    Abstract:

    Aiming at the low tracking accuracy of target work-piece in complex environment, an improved tracking method for target workpiece based on ECO is presented. Firstly, based on the framework of eco correlation filter, VGG features and traditional manual features are weighted and fused to improve the tracking accuracy. Then, the fast discriminant scale space tracker is used to track the target workpiece adaptively. Finally, a high confidence update index is introduced to determine the sparse update strategy of the tracking model to improve the robustness of the algorithm. Tested on the OTB - 2015 standard dataset and compared with other mainstream tracking algorithms, the experimental results show that the average tracking accuracy and the average overlap accuracy of the algorithm are both optimal, reaching 89. 2% and 68. 6%, This algorithm also has good tracking performance for target work-piece dataset taken with CCD industrial camera, which further verifies the validity of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

刘秀平,袁 皓,李梦璐,王圣鹏,徐 健,张立昌,闫焕营. ECO 多特征融合目标工件跟踪方法研究[J].电子测量与仪器学报,2021,35(10):161-167

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-27
  • 出版日期:
文章二维码