摘要:针对传统方式识别交通标志算法存在的检测精度较低的问题,提出了一种改进 YOLOv5 算法的交通标志识别方法。 首 先改进 YOLOv5 算法的损失函数,使用 EIOU 损失函数代替 YOLOv5 算法所使用的 GIOU 损失函数来优化训练模型,提高算法 的精度,实现对目标更快速的识别;然后使用加权 Cluster 非极大值抑制(NMS)改进 YOLOv5 本身所使用的加权 NMS 算法,提高 生成检测框的准确率。 实验结果表明,改进后的 YOLOv5 算法在由长沙理工大学制作的 CCTSDB 交通标志数据集上训练的模 型的 mAP 值达到了 84. 35%,比原始的 YOLOv5 算法提高了 6. 23%。 所以改进 YOLOv5 算法在交通标志识别中有更高的精度, 能够更好的应用到实践当中。