摘要:针对当前含多种电气故障的复杂电路电弧故障识别率低、训练速度慢的问题,提出一种窗口划分结合小波分解与经验 模态分解(empirical mode decomposition,EMD)分别从时域、频域及时间尺度等多个维度提取电流特征量,利用机器学习分类模 型进行电弧故障识别的方法。 首先,利用搭建的电气故障实验平台采集故障及正常电流数据,并将电流数据进行窗口分段,然 后分别使用小波变换与 EMD 方法对电流信号进行分解并计算不同维度上的特征量,将该特征信息作为分类算法的输入进行电 弧故障诊断。 经实验验证,该特征提取方法在梯度提升决策树( gradient boosting decision tree,GBDT)上的电弧故障检测准确率 高达 98%,相比电流不分段的方式分类准确率提升了 1. 87%,能有效获取电弧故障特征,实现对电弧故障高效率与高准确率 检测。