摘要:为了提高单分类支持向量机(one class support vector machine, OCSVM)在滚动轴承性能退化评估的准确性,提出了一种 基于具 有 自 适 应 白 噪 声 的 完 备 经 验 模 态 分 解 方 法 ( complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)、粒子群优化算法(particle swarm optimization, PSO)和 OCSVM 相结合的性能退化评估方法。 首先采用 CEEMDAN 将采集的振动信号计算展开为多个固有模态函数(intrinsic mode functions,IMFs),根据 IMFs 的能量密度获得典型的特征信号; 其次,通过粒子群算法优化 OCSVM 的参数 ν 和径向基核函数参数 g,增强 OCSVM 的学习能力和泛化能力;最后,使用 3σ 设置 自适应阈值,确定轴承早期失效阈值并用 CEEMDAN 和 Hilbert 包络解调的方法验证评估结果的正确性,采用辛辛那提大学的 轴承实验全寿命数据验证所提模型的有效性。 结果表明,PSO 算法优化 OCSVM 的模型可以准确地对轴承运行全寿命状态监 测,与支持向量描述(support vector data description, SVDD)和参数自选的 OCSVM 模型相比,该方法的性能退化评估模型更有效 和优越。