基于改进最小二乘支持向量机的 FPGA 焊点 失效故障评估方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN335

基金项目:

装备预先研究重点项目(41402040301)、国家重点研发计划(20l6YFF0102200)、国家自然科学基金重点项目(51637004)、国家自然科学基金(51777050)项目资助


Research on FPGA solder joint failure evaluation method based on improved least square support vector machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有现场可编程逻辑门阵列(FPGA)焊接点失效故障评估方法存在的无法提供准确的信息、样本数据少、时效性 不高等问题,提出结合遗传算法(GA) 改进最小二乘支持向量机(GA-LS-SVM) 的 FPGA 焊接点失效故障评估方法。 建立 SJ BIST 测试模型,选择合适的外接小电容,通过改变不同工作频率下可变电阻的大小模拟焊点阻值,获得基于小电容电压变化的 故障数据,建立电容低电平的持续时间、电容测试工作频率和焊接点电阻值的三维数据图;最后利用遗传算法优化的最小二乘 支持向量机对所得到的数据进行状态评估,由三维数据图可知,健康的 FPGA 焊接点与断裂的 FPGA 焊接点在低电平的持续时 间具有明显差异。 仿真实验结果表明,所提出的 GA-LS-SVM 方法焊接点健康状态等级分类的总准确率达到 97. 2%,相较于 BP 神经网络、标准 SVM 及 LS-SVM 方法分别提高了 17. 9%、13%及 7. 2%。

    Abstract:

    Aiming at the problems in the current FPGA welding point failure assessment methods, such as the inability to provide accurate information, lack of sample data and low timeliness, combined with genetic algorithm (GA), an improved FPGA welding point failure assessment method based on the least square support vector machine (GA-LS-SVM) was proposed. Establish the SJ BIST test model, select the appropriate small external capacitor, simulate the welding spot resistance value by changing the variable resistor size at different operating frequencies, obtain the fault data based on the voltage change of small capacitor, and establish the three-dimensional data graph of the duration of capacitor low level, capacitor test working frequency and welding point resistance value; Finally using genetic algorithm to optimize the least squares support vector machine (SVM) to state evaluation of the obtained data, according to the three-dimensional data graph, there is a significant difference in the duration of low-level between healthy FPGA solder joints and broken FPGA solder joints. The simulation results show that the proposed GA-LA-SVM method has an overall accuracy rate of 97. 2%, which is 17. 9%, 13% and 7. 2% higher than BPNN, standard SVM and LS-SVM methods.

    参考文献
    相似文献
    引证文献
引用本文

佐 磊,徐相相,陈 昊,姜学义,朱良帅.基于改进最小二乘支持向量机的 FPGA 焊点 失效故障评估方法研究[J].电子测量与仪器学报,2021,35(7):74-82

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-27
  • 出版日期:
文章二维码