太赫兹光谱识别木材的影响因素研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O433. 4;TN247

基金项目:

中央高校基本科研业务费专项(2016ZCQ08)资助


Research on influencing factors of wood identification by terahertz spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    径向变异和不同切面是影响太赫兹光谱识别木材的重要因素。 为了探讨径向变异和不同切面对太赫兹光谱识别木材 的影响,利用太赫兹时域光谱技术获取杉木和柳杉样品的太赫兹光谱数据,共 600 组木材光谱数据,分析太赫兹光谱,基于 BP 神经网络建立木材识别模型,比较模型预测的正确率。 发现木材样品太赫兹光谱因为径向变异和不同切面而存在差异,预测样 品与建模样品径向部位相同时和不同时的模型预测正确率差异较小,最高正确率达到 96. 25%,预测样品与建模样品切面相同 时和不同时的正确率差异较大。 结果表明,基于太赫兹时域光谱技术能够准确实现木材识别,径向变异对木材识别影响较小, 不同切面对木材识别影响较大。

    Abstract:

    Radial variation and different sections are essential factors affecting the identification of wood by terahertz spectroscopy. To explore the influence of radial deviation and different facets on terahertz spectrum identification of timber, terahertz time-domain spectroscopy technology was used to obtain terahertz spectrum data of Cunninghamia lanceolata and Cryptomeria fortunei samples, a total of 600 sets of wood spectrum data, and then the terahertz spectrum were analyzed. A wood recognition model was established based on BP neural network. The accuracy of model prediction was compared. It was found that the terahertz spectra of wood samples were different due to radial variation and other sections. The prediction accuracy of the model with the same or different radial positions between the predicted sample and the modeling sample had little difference, and the highest accuracy was 96. 25%. When the expected sample and the modeled sample belong to the same and different sections, the difference in accuracy is massive. The results show that the technology based on terahertz time-domain spectroscopy can accurately realize wood recognition, radial variation has little effect on wood recognition, and different sections have a more significant impact on wood recognition.

    参考文献
    相似文献
    引证文献
引用本文

赵 磊,王 远,周 南,贾培兴.太赫兹光谱识别木材的影响因素研究[J].电子测量与仪器学报,2021,35(5):161-167

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-27
  • 出版日期:
文章二维码