基于 IFWA-BP 神经网络的线风速数据融合研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH815;TP212

基金项目:

国家重点研发项目(2018YFC0808100)资助


Research on line wind speed data fusion based on IFWA-BP neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对时差法测量线风速受环境因素影响,导致测量结果不准确的问题,提出一种基于自适应烟花-BP 神经网络( IFWABP)的数据融合方法。 将线风速信息和环境信息进行数据融合,通过多源信息互补减小线风速测量的不准确性。 自适应烟花 算法是在烟花算法中引入自适应惯性权重,并对爆炸算子进行改进,增强了烟花算法的全局搜索能力,从而优化 BP 神经网络 中的权值和阈值的寻优过程。 为了比较 IFWA-BP 融合模型的融合效果,进行了多算法融合模型对比实验,实验结果表明 IFWA-BP 融合模型减小了线风速测量的误差,使线风速测量系统的精度达到了 98. 48%。

    Abstract:

    Aiming at the problem of inaccurate measurement results caused by the influence of environmental factors on the line wind speed measured by the time difference method, a data fusion method based on adaptive fireworks-BP neural network ( IFWA-BP) is proposed. Data fusion of linear wind speed information and environmental information is used to reduce the inaccuracy of linear wind speed measurement through multi-source information complementation. The adaptive firework algorithm introduces adaptive inertia weights into the firework algorithm and improves the explosion operator to enhance the global search ability of the firework algorithm, thereby optimizing the optimization process of the weights and thresholds in the BP neural network. In order to compare the fusion effect of the IFWA-BP fusion model, a multi-algorithm fusion model comparison experiment was carried out. The experimental results show that the IFWA-BP fusion model reduces the error of linear wind speed measurement and makes the accuracy of the linear wind speed measurement system reach 98. 48%.

    参考文献
    相似文献
    引证文献
引用本文

吴新忠,陈 昌,耿 柯,魏连江.基于 IFWA-BP 神经网络的线风速数据融合研究[J].电子测量与仪器学报,2021,35(5):16-23

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-27
  • 出版日期:
文章二维码