分层双线性池化图像行为识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP37

基金项目:

国家自然科学基金(61763035)、内蒙古自然科学基金(2020MS06006)资助项目


Hierarchical bilinear pooling method for imagebased action recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于图像的行为识别由于受到类内图像背景信息的差异性和类间行为的相似性影响,至今仍然是一项极具挑战性的任务。某些行为类别在人物姿态、表情动作方面十分相似,因此对图像中各种富含语义信息的部位提取显著性特征对于提高行为识别的精度至关重要。借鉴双线性池化模型在细粒度分类中的优势,同时为避免该模型包含大量背景噪声而影响识别精度,提出一种改进的双线性池化模型用于图像行为识别。该模型利用通道和空间注意力机制关注图像中的重要目标,并通过集成多层注意力掩码图来生成RoI,这可以有效抑制图像中的背景噪声信息,提高行为识别的准确性。最终提出的方法在Stanford-40 dataset 获得了8524%准确率,同时在自定义的60类行为数据集上获得了8457%的准确率。

    Abstract:

    Imagebased action recognition is still a very challenging task because it is disturbed by the differences in the background information of the images in the class and the similarity of the behavior between the classes. Some action categories are very similar in terms of human poses and facial expressions, so extracting salient features from various parts of the image that are rich in semantic information is essential to improve the accuracy of action recognition. Drawing on the advantages of the bilinear pooling model in finegrained image classification, and to avoid this model which containing a lot of background noise to affect the recognition accuracy, an improved bilinear pooling model is proposed for action recognition in the paper. The model uses channel and spatialwise attention mechanism to focus on the important targets in the image, and generates RoI by integrating multilayer attention mask, which can effectively suppress the background noise information in the image and improve the accuracy of action recognition. Our method achieves the accuracy of 8524% on the Stanford-40 dataset, and the accuracy of 8457% on the custom 60 kind of action dataset.

    参考文献
    相似文献
    引证文献
引用本文

吴伟,于嘉乐.分层双线性池化图像行为识别方法[J].电子测量与仪器学报,2021,35(3):152-157

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-07
  • 出版日期:
文章二维码