基于ISSA优化SVM的变压器故障诊断研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM42; TN06

基金项目:

国家自然科学基金青年科学基金(51806133)项目资助


Study of transformer fault diagnosis based on improved sparrow search algorithm optimized support vector machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的变压器故障诊断方法准确率较低的问题,提出了改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量机(SVM)的变压器故障诊断方法。首先引入动态反向学习因子对种群进行优化选择以提高麻雀搜索算法(SSA)全局寻优能力,其次用ISSA优化SVM的核函数参数和惩罚系数,建立基于油中溶解气体分析(DGA)的ISSA算法优化SVM的故障诊断模型。然后采用核主成分分析法(KPCA)对故障数据进行非线性降维。将经过KPCA处理后的数据输入ISSASVM进行故障诊断。并与灰狼算法支持向量机(GWOSVM),粒子群算法支持向量机(PSOSVM)诊断结果进行对比。结果表明,ISSASVM故障诊断率为92%,比GWOSVM, PSOSVM,SSASVM分别提高了1067%、8%、533%,可以更精准的预测变压器运行状态。

    Abstract:

    To solve the problem of low accuracy of tradition transformer fault diagnosis methods, a transformer fault diagnosis method based on the improved sparrow search algorithm was proposed. First, the oppositionbased learning (OBL) is introduced to optimize the selection of the population to improve the global optimization ability of the sparrow search algorithm.Then use the ISSA to dynamically optimize the kernel function parameters and penalty coefficients of the support vector machine, and obtain the fault diagnosis model of the support vector machine optimized by the ISSA based on DGA. The original data is processed through very sparse random projection to remove redundant features. At last input the processed data into ISSASVM for fault diagnosis, and compare it with GWOSVM, PSOSVM and SSASVM. The results show that the fault diagnosis rate of the ISSASVM is 92%, which is 1067%, 8% and 533% higher than that of GWOSVM, PSOSVM and SSASVM. So it can predict the operating status of the transformer more accurately.

    参考文献
    相似文献
    引证文献
引用本文

李黄曼,张勇,张瑶.基于ISSA优化SVM的变压器故障诊断研究[J].电子测量与仪器学报,2021,35(3):123-129

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-07
  • 出版日期:
文章二维码