Abstract:To solve the problem of low accuracy of tradition transformer fault diagnosis methods, a transformer fault diagnosis method based on the improved sparrow search algorithm was proposed. First, the oppositionbased learning (OBL) is introduced to optimize the selection of the population to improve the global optimization ability of the sparrow search algorithm.Then use the ISSA to dynamically optimize the kernel function parameters and penalty coefficients of the support vector machine, and obtain the fault diagnosis model of the support vector machine optimized by the ISSA based on DGA. The original data is processed through very sparse random projection to remove redundant features. At last input the processed data into ISSASVM for fault diagnosis, and compare it with GWOSVM, PSOSVM and SSASVM. The results show that the fault diagnosis rate of the ISSASVM is 92%, which is 1067%, 8% and 533% higher than that of GWOSVM, PSOSVM and SSASVM. So it can predict the operating status of the transformer more accurately.