摘要:为提高传统自适应噪声完备经验模态分解算法(CEEMDAN)对电机轴承故障特征信号的精确提取率,降低重构信号失 真,提出了一种改进自适应噪声完备经验模态分解算法。 首先利用传统 CEEMDAN 对原始信号初步分解,获得若干特征分量 (IMFs)和固有模态分量,将若干 IMFs 运用熵权法进行初步故障特征信号消噪和提取,对筛选后的 IMF 分量进行二次分解和二 次筛选,获得典型故障敏感信号,再运用 SG(Savitzky-Golay)平滑滤波进行信号重构,最终实现电机轴承信号降噪。 最后利用凯 斯西储大学轴承数据进行改进算法性能分析,结果表明该方法对电机轴承信号能够有效的进行信号降噪,其信噪比相比于原始 信号提高 2. 2 dB。