基于递推主元分析法的汽车衡称重 传感器零点故障检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP206+.3

基金项目:

国家自然科学基金(51775185)、湖南省自然科学基金(2018JJ2261)资助项目


Zero-point fault detection of load cells in truck scale based on recursive principal component analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    汽车衡称重传感器零点故障是一种典型的微小故障,不易在线检测,利用递推主元分析(RPCA)与四类故障检测指标相结合的方法,提出一种汽车衡称重传感器零点故障在线检测方法。该方法首先利用基于秩1修正的主元递推算法在线更新主元模型,然后利用Hotelling’s T2统计量、平方预测误差(SPE)统计量、Hawkins TH2统计量、主元相关变量残差(PVR)统计量及其控制限构建故障综合评判方法,最终完成称重传感器零点故障及微小故障在线检测。实验表明,采用这种基于递推主元分析和综合评判方法的称重传感器,零点故障检测准确率比传统方法(即仅采用T2、TH2、SPE、PVR任何一类统计量进行判别),提高了一个数量级,证实了该方法的有效性。

    Abstract:

    A zeropoint fault of load cells in truck scale is a typical minor fault and it is difficult to be detected online. A method for detecting zeropoint fault online is proposed by combining a recursive principal component analysis (RPCA) with four types of fault detection indicators. In this method, firstly, the principal component model is updated online by the principal recursive algorithm based on rank 1 modification, and then the four statistics, i.e., the Hotelling's T2 statistic, the squared prediction error (SPE) statistic, the Hawkins TH2 statistic, and the principal component related variable residual (PVR) statistic, are used to construct a comprehensive evaluation method for fault detection. This proposed method for fault detection online is applied to load cells in truck scale, and the experimental results show that the accuracy of zeropoint fault detection is increased with an order of magnitude by the traditional method, which proves the effectiveness of this proposed method.

    参考文献
    相似文献
    引证文献
引用本文

李慧霞,林海军,邵耿荣,叶 源.基于递推主元分析法的汽车衡称重 传感器零点故障检测方法[J].电子测量与仪器学报,2020,34(1):32-42

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-15
  • 出版日期: 2020-01-31
文章二维码