气体传感器阵列混合气体检测算法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP212. 9;TN911. 72

基金项目:

国家重点研发计划(2018YFE0105000)、国家重点研发计划(2017YFE0100900)、国家留学基金(201906260029)资助项目


Research on mixed gas detection algorithm of gas sensor array
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统模式识别算法对混合气体定性和定量检测准确率较低的问题,提出了一种基于机器学习的新型混合气体定性 识别和浓度定量检测算法。 算法首先构造传感器阵列数据特征图,然后利用卷积神经网络(CNN)提取特征,根据特征提取后 的特征图,使用不同分支网络对不同气体进行定性识别,得到气体种类和相应气体所处浓度区间;根据前面的气体识别结果,使 用核主成分分析(KPCA)与梯度提升树(GBDT)对混合气体的组成成分进行定量估计;最后采用加州大学机器学习数据库的动 态混合气体气体传感器阵列数据集进行对比验证。 实验结果表明,算法在乙烯和甲烷定性识别中准确率达到了 98. 7%,定量检 测平均相对误差小于 4. 1%。 通过与传统模式识别算法对比,所提出的基于机器学习的混合气体检测算法具有更高的精度和泛 化能力。

    Abstract:

    In view of the low accuracy of the traditional pattern recognition algorithm for qualitative and quantitative detection of mixed gases, a novel algorithm of hybrid gas qualitative identification and concentration quantitative detection based on machine learning is proposed. The algorithm constructs the feature map of sensor array data first, then uses the convolutional neural network ( CNN) to extract features from feature maps. According to the feature map after feature extraction, different branches are used to identify different gases, then the species of gases and their concentration range were obtained; based on the results of gas identification, the kernel principal component analysis (KPCA) and gradient boosting decision tree (GBDT) were used to estimate the composition of the mixed gases quantitatively. Finally, this paper used the dataset of sensor array of mixed gases of Machine Learning Database of the University of California to verify the results. Experimental results show that the accuracy of the algorithm in the qualitative recognition of ethylene and methane reaches 98. 7% and the average relative error of quantitative detection was less than 4. 1%. Compared with the traditional pattern recognition algorithm, the machine learning based mixed gas detection algorithm that proposed has higher accuracy and stronger generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

谭光韬,张文文,王 磊.气体传感器阵列混合气体检测算法研究[J].电子测量与仪器学报,2020,34(7):95-102

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-20
  • 出版日期:
文章二维码