Development and application of the latest generation against the network of GAN
Author:
Affiliation:
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献
|
相似文献
|
引证文献
|
资源附件
|
文章评论
摘要:
近年来,生成式对抗网络(generative adversarial nets, GAN)迅速发展,已经成为当前机器学习领域的主要研究方向之 一。 GAN 来源于零和博弈的思想,其生成器和鉴别器对抗学习,获取给定样本的数据分布,生成新的样本数据。 对 GAN 模型 在图片生成、异常样本检测和定位、文字生成图片以及图片超分辨率等多方面进行了大量的调查研究,并在这些 GAN 的应用所 取得的实质性进展进行了系统的阐述。 对 GAN 的提出背景与研究意义、理论模型与改进结构,以及其主要应用领域进行了总 结。 通过对 GAN 在各方面的应用分析,对 GAN 的不足以及未来发展方向进行综述。
Abstract:
In recent years, generative adversarial nets ( GANs) have developed rapidly and have become one of the main research directions in the current machine learning field. GAN is derived from the idea of zero-sum game. Its generator and discriminator are opposed to learning. The purpose is to obtain the data distribution of a given sample and generate new sample data. A large number of investigations have been made on GAN models in image generation, abnormal sample detection and location, text generation pictures and picture super-resolution. The substantial progress made in the application of these GANs has been systematically explained. The background and research significance, theoretical model and improved structure of GAN, and its main application fields are summarized. The shortcomings of GAN and its future development direction were summarized.
参考文献
相似文献
引证文献
引用本文
陈 亮,吴 攀,刘韵婷,刘晓阳,杨佳明,姜 余.生成对抗网络 GAN 的发展与最新应用[J].电子测量与仪器学报,2020,34(6):70-78