基于 S 变换和 PSO-GRNN 的柔性直流输电线路故障测距方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM93

基金项目:

国家自然科学基金(51974151)、辽宁省教育厅重点实验室项目(LJZS003)资助


Fault location method for VSC-HVDC line based on ST and PSO-GRNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有柔性直流输电线路接地故障的神经网络故障测距算法中,训练样本过多、训练时间较长、且未对鲁棒性提出有 效验证的问题,提出一种基于 S 变换和粒子群(PSO)算法优化广义神经网络(GRNN)的线路故障测距算法。 从故障行波能量 谱的角度出发,采用 S 变换提取故障暂态电压信号能量谱,然后对表征各频率区间的能量进行求和,以实现对能量特征样本的 准确提取;再将归一化处理后的能量样本输入神经网络进行训练,并采用 PSO 算法对 GRNN 的光滑因子进行优化,以提高网络 收敛速度和训练精度。 最后,通过电磁暂态仿真证明该方法定位精度高,不易受过渡电阻影响,在输入样本存在测量误差以及 外界噪声干扰的情况下,最大误差仍低于 1. 5%,具有一定的工程运用价值。

    Abstract:

    Aiming at the existing neural network fault location algorithms for ground faults on VSC-HVDC lines, there are too many training samples, long training time, and no effective verification of robustness is proposed. A method based on ST and PSO optimizes the line fault location algorithm of GRNN. From the perspective of the fault traveling wave energy spectrum, the ST is used to extract the fault transient voltage signal energy spectrum, and the energy representing each frequency interval is summed to achieve accurate extraction of the energy characteristic samples; and then normalized the subsequent energy samples and input to the neural network for training, and the PSO algorithm is used to optimize the smoothing factor of the GRNN to improve the network convergence speed and training accuracy. Finally, the electromagnetic transient simulation proves that the method has high positioning accuracy and is not easily affected by the transition resistance. In the case of input samples with measurement errors and external noise interference, the maximum error is still less than 1. 5%, which has certain engineering application value.

    参考文献
    相似文献
    引证文献
引用本文

徐耀松,唐 维,徐才宝,徐 胜.基于 S 变换和 PSO-GRNN 的柔性直流输电线路故障测距方法[J].电子测量与仪器学报,2020,34(6):9-17

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-20
  • 出版日期:
文章二维码