摘要:高光谱图像具有波段多、波段间相关性强的特点,导致高光谱图像信息冗余,造成维数灾难、难以分类的问题,为此提出 了一种基于线性判别分析(LDA)和极限学习机结合的高光谱图像降维分类方法。 该方法首先通过 LDA 对高光谱数据进行降 维处理,克服高光谱图像信息冗余等问题的同时,尽可能保留图像的特征信息;降低光谱图像维度后,采用极限学习机(ELM) 对高光谱遥感图像进行分类识别。 所提方法应用于 Pavia University 和 Salinas 高光谱图像处理,分类精度分别达到了 98. 78%和 99. 94%,有效提升了高光谱图像的地物分类性能,具有较强的实用性。