基于 LDA 和 ELM 的高光谱图像降维与分类方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP23;TN952

基金项目:


Research on dimensionality reduction and classification of hyperspectral images based on LDA and ELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高光谱图像具有波段多、波段间相关性强的特点,导致高光谱图像信息冗余,造成维数灾难、难以分类的问题,为此提出 了一种基于线性判别分析(LDA)和极限学习机结合的高光谱图像降维分类方法。 该方法首先通过 LDA 对高光谱数据进行降 维处理,克服高光谱图像信息冗余等问题的同时,尽可能保留图像的特征信息;降低光谱图像维度后,采用极限学习机(ELM) 对高光谱遥感图像进行分类识别。 所提方法应用于 Pavia University 和 Salinas 高光谱图像处理,分类精度分别达到了 98. 78%和 99. 94%,有效提升了高光谱图像的地物分类性能,具有较强的实用性。

    Abstract:

    Hyperspectral images have the characteristics of multiple bands and strong correlation among bands, which leads to information redundancy of hyperspectral images, resulting in dimensionality disaster and difficulty in classification. Therefore, a dimensionality reduction classification method of hyperspectral images based on LDA and extreme learning machine is proposed. In this method, hyperspectral data are firstly processed by LDA for dimensionality reduction, so as to overcome the problem of hyperspectral image information redundancy and keep the image feature information as far as possible. After reducing the spectral image dimension, ELM is adopted to classify and identify hyperspectral remote sensing images. The method proposed is applied to Pavia University and Salinas hyperspectral image processing, and the classification accuracy reaches 98. 78% and 99. 94% respectively, which effectively improves the feature classification performance of hyperspectral images and has strong practicability.

    参考文献
    相似文献
    引证文献
引用本文

杨明莉,范玉刚,李宝芸.基于 LDA 和 ELM 的高光谱图像降维与分类方法研究[J].电子测量与仪器学报,2020,34(5):190-196

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-15
  • 出版日期:
文章二维码