一种基于 LPTV 的开关电容模拟信息转换器设计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN702

基金项目:

数字福建物联网工程应用实验室建设项目(0110-82917002)资助


Design of switched capacitor analog-to-information converter based on LPTV
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    模拟信息转换器(analog-to-information converter, AIC)以低于 Nyquist 率的采样率成为下一代模拟数字转换器的核心技 术。 模拟信息转换器采用随机解调模块处理输入数据,系统存在典型的时变特性,从而导致理论模型与实际电路模型失配。 针 对该问题,以开关电容作为 AIC 的核心部件,利用线性周期时变( linear periodically time-variant, LPTV)理论将周期时变的 AIC 系统转换为线性时不变系统,推导其系统传输函数,从而建立了 AIC 理论模型的电路设计方法。 实验证明,该电路设计方法使 理论的系统传输函数与实际电路的系统传输函数很好的匹配,充分验证了该设计方案的有效性。 重构结果表明该电路可以将 采样速率降低到原有奈奎斯特率的 25%,重构信号的信噪比最高可达 39. 7 dB。

    Abstract:

    Analog-to-information converter (AIC) become the next generation of the core technology of Analog to digital due to lower than the Nyquist sampling rate. AIC processes the input signal by random demodulator, thus the AIC system has typical time-varying characteristics which results in the mismatch between the theoretical model and the actual circuit model. Aiming at this problem, based on switched capacitor as the core component of AIC, using the linear periodically time-variant (LPTV) theory analysis periodic timevarying AIC system which is converted into a Linear Time invariant system, pushing the transmission function of the AIC system, the circuit design method of AIC theory model is established. Experimental results show that the circuit design method makes the theoretical system transfer function well-matched with the actual system transfer function, which fully verifies the effectiveness of the design scheme. The reconstitution result proves that the sampling rate of the system can be reduced to 25% of the original Nyquist rate using this circuit structure and the successfully reconstructed signal-to-noise ratio is up to 39. 7 dB.

    参考文献
    相似文献
    引证文献
引用本文

宋欣欣,钱 慧.一种基于 LPTV 的开关电容模拟信息转换器设计[J].电子测量与仪器学报,2020,34(5):165-173

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-15
  • 出版日期:
文章二维码