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Mental workload classification in n-back tasks based on single-trial EEG
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Abstract ; Mental workload estimation has been under extensive investigation over the years, because the capability of
monitoring the cognitive workload enables the prevention of cognitive overloading and improvement of workplace safety.
Electroencephalogram ( EEG) signals has been found to be an objective and non-intrusive measure of mental workload.
However, the evaluation of cognitive workload based on single-trial EEG data, which is an essential step towards real-time
workload monitoring and brain-computer interface, has been a major challenge. Recently, a number of advanced feature
extraction methods and machine learning algorithms have been employed in EEG-based mental workload assessment. In this
study, we performed single-trial workload classification using the EEG data recorded during the performance of n-back tasks
with 2 levels of difficulty ( corresponding to low and high levels of workload respectively) , examined the effectiveness of 3 types
of feature extraction ( spectral power, discrete wavelet transform and common spatial filtering) , and evaluated the performance
of 4 classification algorithms ( support vector machine, K-nearest neighbors, random forest and gradient boosting classifiers) .
Our findings indicate that common spatial filtering was the best-performing individual feature extraction method for single-trial-
based workload classification, and the optimal performance was achieved by combining the features from either spectral power
or discrete wavelet transform with those from common spatial filtering, and adopting the random forest classifier. This study
might provide some helpful guidance on the selection of feature extraction methods as well as machine learning algorithms in
mental workload evaluation based on single-trial EEG data.
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1 Introduction
Mental workload, which is usually evaluated by
considering the interactions between the task demand and the
individual’ s capacity """, has been a major research topic
in cognitive neuroscience over the years. The capability of
monitoring the mental workload offers considerable benefits
such as optimizing the working environment and preventing
cognitive overloading . Therefore, various attempts have
been made to estimate the cognitive workload through
different performance

modalities, such as measures,

and physiological assessments .

subjective ratings,
Among these measures, physiological variables have been
preferred mainly because of their objectiveness, capability of
continuous measurement, and minimal disturbance to the
operators.

Electroencephalogram ( EEG ) is a widely used
technology for measuring electrophysiological signals from the
scalp 7' has been found to be a more reliable method for
workload evaluation due to various advantages including great
sensitivity to variations in mental workload, high temporal

[3.8]

resolution, and portability Among the various EEG

studies investigating the neural correlations of mental
workload, working memory ( WM) tasks, most often n-back
tasks, have been extensively employed to induce different

[9-11]

levels of cognitive workload . The widespread adoption

of WM tasks mainly results from the fact that the WM
system, which is a memory system that facilitates short-term

[12-13

storage and processing of information "' has been found

to be closely related to individual > s mental workload
capacity ool

Due to the high trial-to-trial variability of EEG,
traditional EEG analysis of mental workload usually apply
averaging method across a number of trials to improve the

51 However, workload estimation

prediction performance
based on single trials is critical for online monitoring of
cognitive workload as well as the development of brain
computer interface ( BCI) technology " "*’. In recent years,
studies have demonstrated the feasibility of EEG-based

" and potential of

single-trial workload ~classification"’
improving the prediction results through the fusion of
different types of features °" and implementation of advanced

machine learning techniques.

Given the embedded rich time- and frequency-domain
information in EEG signals, various feature extraction
methods have been developed and employed in the evaluation
of mental workload. For instance, band-specific spectral

powers, particularly the powers in the theta "'

19220 and betam'm

alpha bands, have been consistently
discovered to be highly correlated with cognitive workload.
In addition, discrete wavelet transform ( DWT ), which
decomposes  the EEG

signals into  time-frequency

representations at different scales, has also been found to be

effective in workload estimation"*?

!, Furthermore,, common
spatial patterns ( CSP) is another widely used technique for
online workload classification in BCI research that transforms
the multi-channel EEG data into new spatial dimensions so
that the variances of the new signals are optimally

TN
discriminative .

Here, all three techniques, as well as
their combinations, have been used to extract features from
the EEG signals that were fed into the machine learning
algorithms for workload classification.

Over the years, various machine learning techniques
have achieved great success in the classification of mental
workload using EEG. Different classifiers, including support
vector machine (SVM) and K-nearest neighbors ( KNN),
have been adopted and proved effective in mapping the highly
complex relationship between EEG signals and cognitive

[26-29]

workload Recently, ensemble learning algorithms,

including boosting ( such as gradient boosting machine
(GBM)™ ) and bagging (such as random forest ( RF)
classifiers”™ )

algorithms,  have  achieved

[3235

impressive
performance in various contexts > . In this work, we explored
the capability of these 2 types of ensemble learning algorithms
in single-trial EEG workload classification, and compared their
performances with more widely used conventional classification
techniques including SVM and KNN.

In this study, using the EEG data recorded during n-
back tasks with two levels of workload (high vs. low), 1)
performed individual-based single-trial workload
classification, 2 ) compared the effectiveness of different
feature extraction methods as well as their combinations, and
3) compared the performance of different machine learning
algorithms in discriminating the cognitive workload. Our
findings might serve as a practical guideline for the selection
of the types of features and classifiers in future studies on

EEG-based single-trial workload classification.
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2 Methods and materials

2.1 Subjects and experiments

In the current study, 21 university students performed
n-back tasks at 2 difficulty levels; 1-back and 3-back. The
study was approved by the Institutional Review Board of
National University of Singapore. Written informed consent
was obtained from all participants after the explanation of the
experimental protocol. The participants were reimbursed
S$20 for their participation. Four subjects were excluded
from the following analysis due to insufficient number of
correct trials.

The experimental paradigm is illustrated in Fig. 1. The
subjects were instructed to watch a sequence of images,
compare the currently presented image with the one n (n =
1 or 3) trials back, and make the correct response with a
keyboard with 3 buttons: “1”, “2” and “3”. Specifically,
the subjects were requested to remember both the content
and the position of the image such that, compared with the
image n trials back, 1) if the image (not position) was the
same, they had to press “1”; 2) if there was a position ( not
image) maich, they had to press “3”; 3) if both the image
and position were the same, they had to press “27; 4) if
neither the image nor the position were the same, they do not
need to press any button. There were 80 trials for both 1-
back and 3-back tasks. The sequences of the n-back tasks

within each session were pseudorandomized and each session

lasted around 20 minutes.
1-back(80 trials)

«2s—>

<=3
—_—— ]
Button:Nong
. Button:3 gyyron7]
(a) Low mental workload with 1-back task

3-back(80 trials)

———— |
Button:2
Button:1 Button:3

Button:None

(b) High mental workload with 3-back task

Fig.1 Experimental paradigm of the n-back tasks

2.2 Data acquisition
During each session, 64-channel EEG data were
recorded, with the positions of the electrodes based on the

standard 10-20 system, with the ANT wave-guard system

( ASA-Lab, ANT B. V., Netherlands ).

frequency was 256 Hz and the recorded signals were re-

The sampling

referenced to the average of the electrodes at the left and
right mastoids, which resulted in 62 channels in the
following analysis. The bipolar electrooculogram ( EOG )
signals were recorded with electrodes attached to the outer
canthi (HEOG) , and above and below ( VEOG) the right
eye. The impedances of the electrodes were maintained
below 10 k) throughout recording. The data were band-pass
filtered from 0. 5 ~ 70 Hz for anti-aliasing, and main
interferences were removed by applying a 50 Hz notch filter.
2.3 EEG data preprocessing

The recorded EEG signals were band-pass filtered from
1 ~40 Hz. Subsequently, the artefacts caused by eye blinks
and eye movements were removed through independent

%37 Specifically, the multi-

component analysis (ICA)'
channel EEG signals were first decomposed into independent
components using the AMICA algorithm "**' | following which
the correlations between each of the components and the
horizontal as well as vertical EOG components were
calculated; next, those independent components that
exhibited high correlations with the EOG signals were
removed, and the EEG

reconstructed from the remaining independent components.

identified and signals  were
Afterwards, the artefact-free EEG data were segmented into
individual epochs, with the beginning of each epoch marked
by the stimulus onset of each trial and a time window of 1
second. In the current study, only correct trials were
selected for the following analysis. All preprocessing steps

were conducted using EEGLAB ™.
2.4 Feature extraction

Three types of features are extracted from the EEG
signals; Spectral power, discrete wavelet transform (DWT)
and common spatial patterns (CSP). Each of these feature
extraction methods, and their combinations, are employed
for the single-trail EEG mental workload classification.
2.4.1

The spectral power of EEG signals, mostly in the theta
(4 ~7 Hz), alpha (8 ~12 Hz) and beta (12 ~30 Hz)

frequency bands, has been consistently discovered to be
3, 4041]

Band power

reflective of mental workload ' Here, the spectral
powers in these 3 frequency bands of all electrodes were used
as features in the classification analysis, which led to 62 x
3 =186 features for each trial.

2.4.2 Discrete wavelet transform
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Wavelet transform ( WT) has been widely adopted in
various EEG studies due to its advantage in time- and

[23, 4244]

frequency-localization In WT, the time-frequency
representation of a time series is obtained through the
application of time windows with variable sizes such that high-
frequency information is extracted using short time windows,
whereas low-frequency representations of a signal is obtained

[42]

though long time windows The continuous wavelet

transform (CWT) of a time series x(¢) is calculated by

CWT(a, b) = J'_:x(t)%go(t;a)dt (1)

which ¢ represents the wavelet function, and @ and b are

the scaling and shifting parameters respectively. Moreover, in
order to avoid the huge computational cost of evaluating the
wavelet coefficients at every possible values of a and b,
discrete wavelet transform (DWT) is calculated by assigning
discrete values to the scaling and shifting parameters

DWT(j, ) = jix<z>/1Tp(“2ﬁ2")dt 2)

which can be obtained from equation (1) by replacing
a with 2 and b with k2. DWT can be efficiently
implemented in the following manner: the signal is passed
through a quadrature mirror filter, which consists of 1) a
high-pass filter that produces the detail coefficients of level 1
(D1) and 2) a low-pass filter that yields the approximation
coefficients of level 1 ( A1) ; next, Al is passed to another
quadrature mirror filter, through which the level-2 detail and
approximation of the signal are obtained; the process is
repeated until the desired number of levels are reached .
In this study, the Daubechies4 (db4) wavelet is used as
the wavelet function. Moreover, the EEG signals were
decomposed into 5 levels (D1 64 ~ 128 Hz, D2. 32 ~
64 Hz, D3: 16 ~32 Hz, D4. 8 ~16 Hz, and D5: 4 ~
8 Hz), and the detail coefficients in levels 3, 4 and 5
(corresponding to the beta, alpha and theta bands) were
features for the workload

employed for extracting

classification. The energies of the detail coefficients of each

channel in the 3 scales are used as features "= *7 .
1 2
E =— D: 3
. Ni:;,s , (3)

which N is the number of time points in each trial (N =
256). Therefore, 62 x 3 =186 features are produced for
each trail.
2.4.3 Common spatial patterns

The common spatial patterns technique is a widely used

method for extracting discriminative features in the research

of Brain Computer Interface ( BCI) for mental workload

e (4748
classification "7

. The CSP algorithm derives the optimal
spatial filter that transforms the multi-channel EEG data to a
new spatial space such that the inter-class difference in the
variances of different filtered EEG signals are maximized'*’".
In the current study, the variances of the 10 most

discriminative CSP features are employed.
2.5 Mental workload classification

Four classifiers are employed for the single-trail
workload classification in the current study, including 2
popular ensemble learning algorithms; Gradient boosting and
random forest (RF) classifiers, and 2 widely used classifiers
in EEG workload classification; K nearest neighbor ( KNN)
and support vector machine (SVM) classifiers. The Scikit-
*/is used for the RF, SVM and
KNN classifiers, and the XGBoost Python package ™' is used

learn package in Python *

for the gradient boosting classifier.

For each leave-one-out Cross-

( LOO )

validation was used to evaluate the performance of the feature

subject,

extraction methods and classifiers. The LOO method has

been demonstrated to produce a relatively unbiased
estimation of the true performance of the model and the
generalizability of the machine learning model to new testing

data [50-51]

. In each iteration of the LOO algorithm, one of
the trials was treated as the testing sample, whereas the
remaining trials were used as the training set; the percentage
of correctly predicted trials were used as the classification
accuracy for the particular subject. In order to avoid the
curse of dimensionality when using the spectral power and
DWT as features, feature selection was performed within
each iteration of the LOO process by preserving the features
corresponding to the top 30 F-values, which were derived
from ANOVA analysis between each individual features and
the class labels. In addition, in order to identify the specific
power and DWT features that are important for single-trial
workload discrimination across subjects, one additional
feature selection was performed for every subject after the
classification analysis with the ANOVA technique, and those
features that were selected for at least 6 subjects were
identified and presented.

In order to facilitate unbiased comparisons of the
performances of different classifiers, for each type of features
as well as each combination of features, the free parameters
of the classifiers are tuned through grid search and the
classification accuracies obtained using the best-performing

parameters are presented in the following sections.
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2.5.1

The gradient boosting algorithm iteratively trains a

Gradient boosting

number of weak decision-tree classifiers to gradually optimize

exceptional

performance in many real-world classification problems ™ .

the loss function™ and has achieved
Therefore, in this study, we have explored whether this
algorithm can boost the results of EEG single-trial workload
classification. We have adopted the eXtreme Gradient

22! implementation of the algorithm,

Boosting  XGBoost
which provides various advantages such as fast training speed
and superior performance. In order to avoid excessive
computational cost, the following parameters are selected
based on prior knowledge and fixed: max_depth = 2,
gamma = 0, max_delta_step = 0, subsample = 0.8,
colsample_bytree = 0.4, alpha = 0.5, lambda = O ;
whereas the number of trees is chosen in the following set;
{50, 100, 150, 200} and the learning rate (eta) is
selected in {0.01, 0.05, 0.11}.
2.5.2 Random forest

A random forest classifier consists of a number of
decision-tree classifiers, each of trees is trained on a
bootstrapped subsample of the entire training dataset and
their predictions are averaged to produce the final
prediction™. RF has been previously employed in various
EEG studies

discriminating different mental states

and demonstrated to be effective in

(333] n this work , we
have assessed the capability of RF for classifying mental
workload using single-trial EEG signals. The number of trees
in the RF algorithm is tuned by applying the following
values: {50, 100, 150, 2001 .
2.5.3 SVM and K-nearest neighbor classifiers

Both support vector machine (SVM ) and K-nearest
neighbor ( KNN) classifiers have been widely used in EEG
studies for mental workload classification "**!. For SVM, the
radial basis function ( rbf) kernel is used and the free
parameters, C and gamma, are both grid-searched using the

For KNN,

the number of nearest neighbors (K) used in the algorithm

. -6 -4 -2 2 4 6
following values: {e ", e™, e™, e’, e, e"}.

are selected from the following set of values: {3, 5, 10, 20}.

3 Results

3.1 Behavioral results

The accuracy of the 1-back task was (97.0 £2.7)%
(mean = S.D.), whereas the accuracy of the 3-back task
was (45.5 £ 14.3)% . The significant difference (p <
0.001) in accuracy indicates the presence of differences in

cognitive workload between these two tasks.
3.2 Workload classification

The classification accuracies of different machine
learning algorithms using each of the individual feature
extraction methods are shown in Fig. 2. As shown in the
figure, all classifiers achieved satisfactory accuracies ( higher
than 70% ) for all types of features; the spectral power and
DWT methods produced closely comparable results, whereas
the CSP technique led to significantly better accuracies;
regardless of the type of features, the best classification
performance was achieved by the RF classifier, followed by
XGBoost.

0.80

: 1
g
3
9
<
XGBoost RF SVM KNN
(a) Classification accuracy using DWT features
XGBoost:learning rate=0.05;number of trees =100;
RF:number of trees=200;,SVM:C=e"2,gamma=e™,
KNN:number of neighbors=20
080
i T
: 1
g
<

XGBoost RF SVM KNN

(b) Classification accuracy using Power features
XGBoost:learning rate=0.01;number of trees =150;
RF:number of trees=150;SVM:C=¢"2,gamma=¢"%,
KNN:number of neighbors=10
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0.64

XGBoost RF SVM KNN
(c) Classification accuracy using CSP features
XGBoost:learning rate=0.01;number of trees =200;
RF:number of trees=100;SVM:C=¢2, gamma=e~*,
KNN:number of neighbors=5
Fig.2  Average classification accuracy using each of the

individual feature extraction methods with

different classifiers and optimal hyper parameters

Table 1 and Fig. 3 display the performance of
classifiers when different combinations of the feature
extraction methods were used. Due to the comparable
performance of the power and DWT features, only the
combinations of each of these two methods with the CSP
technique, as well as the combination of all three types of
features, were explored. As shown in the figure, all 3 types
of feature combinations improved the accuracies compared
with the single-feature classification ( Fig. 2); similar to
Fig. 2, the best performance was achieved by RF, although
in the combination of all 3 types of features, SVM produced
closely comparable result; for the best-performing model
(RF), all 3 methods of feature combination yielded similar
results. Classification accuracy using the combination of
different feature extraction methods with different classifiers
(corresponding to Fig.3).

Table 1 The values in the table represent mean

( standard error of mean)

Features XGBoost RF SVM KNN
76.3 77.7 76.6 74.6
DWT + CSP
(2.3% )  (2.0%) (2.3%) (2.1%)
76.2 77.4 77.0 75.8
Power + CSP
(2.0% )  (2.0%) (2.2%) (2.0% )
75.9 77.8 77.8 76.6
DWT + Power + CSP

(2.2% )  (2.0%) (2.6%) (2.1%)

Accuracy

Accuracy

Accuracy

bt

=
~
)

0.68

XGBoost RF SVM KNN

(a) Classification accuracy using DWT+CSP features
XGBoost:learning rate=0.01;number of trees =50,
RF:number of trees=150;SVM:C=e?,gamma=e¢;
KNN:number of neighbors=10

XGBoost RF SVM KNN

(b) Classification accuracy using Power+CSP features
XGBoost:learning rate=0.05;number of trees =200;
RF:number of trees=150;SVM:C=¢? gamma=¢°;
KNN:number of neighbors=5

=
\1
D)

0.68

XGBoost RF SVM KNN

(c) Classification accuracy using DWT+Power+CSP features
XGBoost:learning rate=0.01;number of trees =200;
RF:number of trees=50;,SVM:C=e? gamma=¢~°;
KNN:number of neighbors=10

Fig.3 Average classification accuracy using the

combination of different feature extraction methods

with different classifiers and optimal hyper parameters
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Fig. 4 shows the power and DWT features that were
selected for at least 6 subjects, which might serve as a
guideline for the selection of a subset of features for single-
trial workload classification. As shown in the figure, for the
spectral power features, 1 channel was discriminative in all 3
frequency bands (PO5) ; 3 channels were identified in both
alpha and beta bands (C2, C5 and TP8); in addition, 2
theta-specific, 2 alpha-specific and 4 beta-specific channels
were found to possess consistently strong discriminative
DWT features, no

discriminative features were discovered; 1 channel was

power. Regarding the theta-band
identified in both alpha and beta bands; above all, a large
number of channels (13 out of 14), predominantly in the

frontal regions, were pinpointed in the beta band.

¥ Theta AAlpha @ Beta MAlphatbeta ¥ Thetat+alphatbeta

(a) The discriminative features from

(b) The discriminative features from
spectral Power T

Fig.4 The discriminative features from different

frequency bands are highlighted by different shapes

4 Discussion

In this study, we performed individual-based EEG
single-trial workload classification in order to discriminate
between 2 working memory tasks with different workload
levels. We assessed the discriminative power of 3 types of
features as well as their combinations. The results suggested
that comparable accuracies were produced by the features
derived from spectral power and DWT, both of which were
significantly outperformed by the CSP features; combining
either spectral power or DWT with the CSP features further
improved the classification results. In addition, we also
evaluated the effectiveness of 4 different machine learning
algorithms in mental workload classification based on single-
trial EEG data and discovered that random forest classifier
achieved the best classification accuracy regardless of the
type of features.

The comparison of the performance of different types of

features might suggest that despite of the widespread usage of

and DWTL: 2 4044 EEG workload

classification, the CSP technique might be superior in

spectral power

extracting informative and discriminative features for

workload classification based on single-trial EEG, which is

5] The fusion

consistent with observations in BCI research '
of different types of features have been found to be an
effective method for improving the performance of EEG
mental workload classification”®'. Our findings further
corroborate this notion by revealing that the combination of
either spectral power or DWT features with the CSP features
can significantly improve the accuracy of single-trial mental
workload classification.

Random forest, which has been proved to be effective in

EEG mental workload classification 3%

, was found in this
work to be the best-performing classifier in terms of single-
trial EEG workload classification compared with the other
widely used classifiers; SVM and KNN, as well as another
popular ensemble learning algorithm; gradient boosting.
Moreover, the exceptional performance of RF seemed robust
against the type of features used in the model. Of note,
gradient boosting classifier, which has gained success in
various real-world applications, did not produce superior
results compared with other algorithms, which might result
from the small sample size for each individual or the non-
exhaustive parameter tuning.

Discriminative spectral power features are identified in
all frequency bands and resided in a wide range of brain
regions, which is consistent with previous findings in EEG

. The DWT

power are

workload classification based on single trials =

features with  consistently  discriminative
predominantly in the beta band, which has been found to
reflect the cognitive demand ™', Moreover, in agreement
with the findings in previous EEG studies of cognitive

utilized DWT as a

method”™" | the channels possessing high discriminative

workload that feature extraction

power are mostly located in the frontal brain regions.

5 Conclusion

To conclude, after comparing different feature extraction
methods and classification algorithms, we found that the best
classification result was achieved by 1) combining the
spectral power or DWT features with CSP technique and 2)
the random forest classifier, which might serve as a guideline
for mental workload classification based on single-trial EEG

data for future works.
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