DOI: 10. 19650/j.cnki.cjsi.J2006046

基于改进型卷积网络的汽车高度调节器缺陷检测方法*

鲍光海1,2,林善银1,徐林森3

 (1. 福州大学电气工程与自动化学院 福州 350108; 2. 福州大学 新能源发电与电能变换福建省高校重点实验室 福州 350108; 3. 慈溪亚路车辆配件有限公司 宁波 315000)

摘 要:针对汽车高度调节器生产中人工缺陷检测耗时耗力和传统诊断方法适用性差的问题,运用深度学习提出了一种基于改进型卷积网络的智能检测方法。该方法利用卷积网络提取特征,并且在网络中加入残差网络结构和可分离卷积,在深层网络提高精度的同时减少了参数计算量。改进的结构主要运用卷积层、池化层、批标准化层、softmax 层,并引入残差网络结构和可分离卷积。实验结果表明,基于改进型卷积网络的汽车高度调节器缺陷检测方法有着良好的识别精度,在汽车高度调节器多类缺陷的检测实验中,准确率均在 99% 以上,优于经典卷积网络 VGG16。

关键词: 深度学习;改进型卷积网络;残差网络;汽车高度调节器;缺陷检测

中图分类号: TP29 TH124 文献标识码: A 国家标准学科分类代码: 5210.20

Defect detection method for automobile height regulator based on improved convolution network

Bao Guanghai^{1,2}, Lin Shanyin¹, Xu Linsen³

 (1.College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; 2.Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou University, Fuzhou 350108, China;
 3.Cixi Yalu Vehicle Accessories Co., Ltd., Ningbo 315000, China)

Abstract: Aiming at the problems in automobile height regulator production that manual defect detection is labor-intensive and timeconsuming, and traditional diagnosis method has poor applicability, an intelligent detection method based on improved convolution network is proposed using deep learning. In this method, convolution network is used to extract features, and residual network structure and separable convolution are added to the network, which improves the accuracy of deep network and reduces the parameter calculation amount. The improved structure mainly uses convolution layer, pooling layer, batch standardization layer and softmax layer, and introduces residual network structure and separable convolution. The experiment results show that the defect detection method for automobile height regulator based on improved convolution network has good recognition accuracy. In the detection experiment on multiple kinds of defects for automobile height regulator, the accuracy is above 99%, which is superior to that of the classical convolution network VGG16.

Keywords: deep learning; improved convolution network; residual network; vehicle height regulator; defect detection

0 引 言

汽车制造业中的安全带高度调节器,能调节安全带 上固定点的高度,配合座椅高度的调节,提高不同身高、 性别、形体的乘员在佩戴安全带时的舒适性,有效避免乘 员在佩戴时出现脱肩、压颈、压胸(针对女性乘客)等不 舒适现象,属于汽车安全配件。一般由金属导轨、调节按 钮、螺栓、滑块(拖板)、导向环安装螺母和螺栓、饰盖等 配件组成。

然而员工在拼装过程中,经常会出现错装、漏装等失 误,使用这些拼装错误的工件会让汽车运行出现严重隐

收稿日期:2020-01-17 Received Date:2020-01-17

^{*}基金项目:福建省科技计划项目(2018H0014)资助

患^[1]。因此当工件生产完成以后,还需要对工件的形态 进行检测。传统上,这些检测都是由熟练的人工检测,但 是人工检测的效率低、实时性差、准确率不高而且花费的 工时很长。因此,利用自动的缺陷检测系统十分必要。

缺陷检测步骤通常由3个部分组成:数据获取、特征 提取和特征分类。传统的图像分类方法一般是以针对物 体特征为主,包括对图像的颜色、纹理、序列特征和形状 特征提取,然后设计分类器,并通过不断实验和参数调整 来提高分类准确率。其中最为重要的部分是特征提取, 缺陷检测的成功与否一般取决于特征的选择与提取。贺 振东等[2]提出了基于背景差分的钢轨表面缺陷检测算 法,通过对钢轨区域提取、背景建模差分、阈值分割和图 像滤波4个步骤,能对块状缺陷很好地识别,但对其他缺 陷不敏感。谢从珍等^[3]提出利用相控阵超声波探伤仪对 复合绝缘子在正常黏接、硅橡胶中部气孔缺陷、硅橡胶中 部断面缺陷以及伞裙护套与芯棒黏接不良等缺陷下的特 征进行提取,但对复杂结构的多种工件缺陷而言设计效 率低。焦敬品等^[4]分析焊缝图像的纹理特征,从焊缝图 像的灰度共生矩阵提取出 15 种特征参数,并利用 BP 神 经网络应用于焊缝表面缺陷自动识别中,但整体 91% 的 准确率不足以在工业生产使用。闵永智等^[5]基于双边滤 波思想设计了背景平滑滤波器,对原图像平滑得到背景 图片,最后利用差分图像阈值分割和连通区域标记法实 现钢轨表面缺陷检测,但只能检测疤痕和裂纹缺陷,并且 漏检率达到 5.79%。郭皓然等^[6]提出利用 Canny 最优边 缘检测器结合全局阈值最大类间方差法和形态学图像分 割法,完成图像分割及自适应调整的阈值,实现对缺陷目 标的识别,但此方法精准度不够。苑玮琦等^[7]提出将高 斯融合特征及圆度和边缘直线度两种几何特征输入到 BP 神经网络模型中,做到对木材表面裂缝、矿物线、矿物 块和黑节子缺陷进行识别,识别率在92%左右。

与上述文献的传统方法相比,深度学习在特征提取 与图像分类上有着独特的潜力和优势,即特征提取简易、 分类准确。本文研究了适用于汽车高度调节器表面缺陷 的识别方法,针对传统机器视觉特征提取的繁琐与局限 性,提出利用卷积神经网络(convolutional neural network, CNN)对汽车高度调节器进行缺陷分类^[8]。本文首先将 经典 VGG16卷积网络运用在高度调节器缺陷分类上,发 现存在训练时间久和准确率不够高的问题。在近年神经 网络发展的基础上,本文提出了一种改进型卷积网络结 构,使用残差结构、批标准化和可分离卷积,具有故障识 别率高和模型轻量化的优点。实现了缺陷分类,免去人 工对特征进行提取的复杂过程。并与经典卷积网络 VGG16进行对比^[9],实现更高准确度的情况下达到更少 的参数量。实验结果不仅验证了本文网络模型的可靠 性,还具备很高的工程实用价值,便于推广。

1 基于改进型卷积网络的工件缺陷检测

1.1 经典卷积网络结构

通常卷积结构一般由卷积层、池化层、全连接层和分 类层组合而成,经典卷积网络 VGG16 也是如此。VGG16 包含13 个卷积层、5 个池化层和3 个全连接层,其结构如 图 1 所示。虽然其结构简单,但是所包含的权重数目很 大,导致训练时间过长,参数不易调整,同时需要的储存 内存也很大,不利于部署到工业环境。而为了提高精度, 在此基础上单纯提高网络深度时,容易造成梯度爆炸或 者梯度消失,并且计算量很大。

Fig.1 Structure of VGG16

1.2 改进型卷积网络结构

针对传统检测方法适用性差、耗时和不易于推广的 问题,为了能实现高度调节器缺陷识别的实用化,本文提 出了一种改进型残差卷积神经网络,其中使用了卷积层、 池化层、softmax 层,并且借鉴了残差网络、批标准化层和 可分离卷积^[10]。本文提出的缺陷检测系统具有以下 特点:

 1)模型采用卷积网络来对原始数据进行提取特征, 降低了提取特征的难度,增强了高度调节器缺陷诊断的 普遍适用性。

2)引入批标准化、残差网络结构和可分离卷积可以 使深层网络有更少的参数计算量,使得深层网络的错误 减少,降低了训练时间,提高了训练效果。

(1)卷积层

卷积在卷积神经网络中的作用主要是特征提取,浅 层的卷积提取初级的特征,越深层的卷积提取的特征越 抽象^[11]。形式化的卷积操作可表示为:

g(*x*,*y*) = *f*(*x*,*y*) * *c*(*u*,*v*) (1) 式中:*g* 为输出图像;*f* 为输入二维离散函数;*c* 为卷积操 作函数;*x*,*y*,*u* 及 *v* 是尺寸参数。 (2) 池化层

池化层是卷积神经网络中另一个重要部分,它实际 上是一种降采样,其主要目标是降低特征图的尺寸,防止 特征图参数太多不利于特征的提取^[12]。当卷积核尺寸 为2×2,步长为1时,池化的公式为;

$$y_{ij} = \max(x_{i,j}, x_{i,j+1}, x_{i+1,j}, x_{i+1,j+1})$$
(2)
(3)全连接层

全连接层能将前面卷积层和池化层所提取的特征信 息整合起来。全连接层的核心操作就是矩阵向量乘积, 如下所示:

$$y = Wx \tag{3}$$

式中:W为全连接层参数举证;x为输入;y为输出。

全连接即使经过再多层的网络,最后结果的表达式仍然 是线性的,增加网络深度也不会有效。所以需要通过激活函 数对线性输出进行非线性变换。一般中间的全连接层都是 采用修正线性单元函数(relu)^[13]。数学表达式如下:

 $f(x) = \max(0, x) \tag{4}$

最后一层的全连接层往往起着分类作用,一般采用 softmax 逻辑回归(softmax regression)进行分类^[14]。通常 希望分类时能取到某类的概率,即分值结果大的能经常 出现而分值结果小的能小概率出现。softmax 就是一个 这样的函数,假设有一个数组 N,其中 *i* 表示第 *i* 个元素, 一共有 *j* 个元素。

$$S_i = \frac{e^i}{\sum e^j} \tag{5}$$

(4) 批标准化层

批标准化层的作用就是对每个隐层神经元进行非线 性函数映射后的取值范围强制变化为均值为 0、方差为 1 的标准正态分布,使得非线性变换函数的输出值变成对 下一层输入比较敏感的区域,可以一定层度上解决梯度 消失的问题^[15]。标准化公式为:

$$\hat{x}^{(k)} = \frac{\hat{x}^{(k)} - E[\hat{x}^{(k)}]}{\sqrt{D[\hat{x}^{(k)}]}}$$
(6)

式中: $\hat{x}^{(k)}$ 为某层第 k个神经元; E为均值函数; D为方差函数。

批标准化有以下作用:①简化调参过程,可以使用大 学习率更快的学习。②能增加分类效果。③大大提高训 练速度,加速收敛过程。

(5) 残差网络

He 等^[16]提出残差块(residual block),它的原理是通 过将前面若干层的数据输出直接跳过多层网络结构并接 入到后面数据层的输入部分。利用 F(x)表示没有跳跃 连接的网络,则残差块可以表示为 H(x) = F(x) + x,这样 会使得堆积层在输入特征基础上学习到新的特征,从而 拥有更好的性能。残差块结构如图 2 所示。

Fig.2 Residual block

用 σ 表示激活函数,然后通过 shortcut 和 relu 获得 输出 y,则有如下表达式:

 $F(x) = \sigma(W_1 x) \tag{7}$

 $y = \sigma(W_2 \sigma(W_1 x) + x_{\text{identity}})$ (8)

式中:W为权重的参数;x为上一层的输入变量。

残差网络解决了退化问题,在训练集和验证集上,更 深的网络错误率越小。在实际中,对残差网络进行计算 优化,将两个 3×3 卷积层替换为依次由 1×1、3×3 和 1×1 卷积层构成的形式。

(6)全局池化层

在卷积网络中,全连接层的参数是最多的。为了减 少参数,以往大部分文献中的全连接层都用平均池化层 来代替。全连接层的思想是利用特征图直接表示类的置 信图。其优点是:由于全连接层的参数众多,这样可以大 大减少参数量,很好地压缩模型的大小,同时可以有效地 减轻过拟合的产生。

1.3 改进型卷积网络的实际结构

在介绍完与普通卷积网络不同的结构后,本节介绍 本文提出的实际网络结构以及参数。整个网络的输入为 两个摄像头采集到的样品左右侧照片,然后再通过数据 预处理后图片尺寸变为 224×224,经过归一化将 RGB 值 转到[0,1]范围里。归一化后的图片被输入到第1层卷 积层,第1层卷积层有64个3×3步长为2的卷积核,再 经过批标准化层后输入到第2层卷积层,第2层卷积层 有着 64 个 3×3 的卷积核,然后再经过批标准化后进行最 大池化。接下来特征图将被送入11个残差模块,残差模 块的输入是上一轮卷积的特征图,特征图同时被两条支 路的卷积操作。一方面,特征图经过 relu 激活函数→可 分离卷积层→批标准化→relu 激活函数→可分离卷积 层→批标准化→最大池化得到特征图 A。另一方面,特 征图经过可分离卷积层→批标准化后得到特征图 B。最 后特征图 A 与特征图 B 通过融合层相叠加,这就是本文 的一个残差模块,其能以更少的参数量提取到更多的特 征[17-18]。特征图先经过11个残差模块,再经过两层的可 分离卷积,然后通过1×1的卷积核后所得特征被送入全

局平均池化层,来减少参数量和过拟合。最后,再接入带 有 softmax 的全连接层进行分类,实际网络结构参数如 表1所示。

网络结构参数

表 1

Table 1	Network structure parameters			
类型	输出特征图大小	卷积核大小		
输入层	224×224×3	-		
卷积层	111×111×64	3×3		
批标准化	111×111×64	-		
卷积层	109×109×64	3×3		
批标准化	109×109×64	-		
残差模块×11	14×14×512	-		
可分离卷积	14×14×1 024	3×3		
批标准化	14×14×1 024	-		
可分离卷积	14×14×2 048	3×3		
批标准化	14×14×2 048	-		
全局池化层	2 048	-		
输出	11	-		

根据本节讨论的结果,设计的程序主要流程如下:首 先通过摄像头采集高度调节器缺陷样本和合格品样本的 图像,按照8:2的比例将图像划分为数据集和训练集,并 对训练集进行数据扩展。然后创建修改型卷积网络的模 型,导入训练集和测试集训练网络,通过前向传播计算损 失,再通过反向传播算法更新网络参数,当网络满足一定 条件后停止训练并保存模型。最后,通过将训练好的模 型部署在工业主机中,每次输入照片 softmax 分类器就会 输出一个分类结果。

而在实际生产中,工厂每生产一个高度调节器 PLC 就会与程序通信。电脑程序控制摄像头对高调器两端进 行拍摄,再将拍摄后的照片送入模型后得到缺陷结果。 最后程序将结果发送给 PLC, PLC 再控制机械臂将高调 器放入对应的区域。高调器产品结构如图3所示,检测 装置现场如图4所示。

图 3 汽车高度调节器产品 Fig.3 Product of automobile height adjuster

图 4 检测装置 Fig.4 Detection device

2 实验及讨论

2.1 数据集概述

本文用于实验和测试的数据集中包括右侧合格、 右侧多装弹垫验证件、右侧多装纸垫验证件、右侧漏装 弹垫验证件、右侧钩子变形验证件、右侧错装弹垫验证 件、左侧合格、左侧多装弹垫验证件、左侧多装纸垫验 证件、左侧漏装弹垫验证件、左侧螺栓混料验证件、左 侧错装弹垫验证件共11类图像样本,高调器左右侧缺 陷样本如图 5 和 6 所示,各 800 张,其中以 8:2划分为 训练集和测试集。

(a) 合格 (a) Qualified

(c) 多装纸垫 (c) Multiple paper cushions

(e) 钩子变形 (e) Hook deformation

(b) 多装弹垫 (b) Multiple loading pads

(d) 漏装弹垫 (d) Missing loading pad

(f) 错装弹垫 (f) Wrong loading pad 图 5 高度调节器右侧缺陷 Fig.5 Right side defect of height regulator

2.2 数据集预处理

由于对缺陷识别采用的是卷积神经网络,其中学习

(b) 多装弹垫

(b) Multiple loading pads

(d) 漏装弹垫

(d) Missing loading pad

(a) 合格 (a) Qualified

(c) 多装纸垫 (c) Multiple paper cushions

(e) 错装弹垫 (e) Wrong loading pad

图 6 高度调节器左侧缺陷 Fig.6 Left side defect of height regulator

效果高度依赖数据样本的规模和多样性,而高度调节器并没有公用图像库,只能采用人工方式对不同型号高度调节器的缺陷进行拍摄作业,并使用 keras 中的图片数据增强模块对训练集进行如下数据处理^[19]:

1) 图像归一化:将图像 RGB 值缩放到[0,1]区间。

2)图像水平、垂直平移:随机水平或垂直方向平移
 10个像素点,空白处 nearest 补齐。

3)图像水平、垂直对称:随机在水平或垂直方向翻转。

4) 缩放:随机缩放比例为 0.9~1, 空白处 nearest
 补齐。

5) 旋转:随机选择 0°~20°, 空白处 nearest 补齐。

在每轮训练中,训练集都会进行一轮预处理,这样大 大扩充了数据样本,可以有效防止过拟合。

2.3 网络训练

实验基于 Windows 10 操作系统, Intel(R) Core(TM) i9-9900ks, 32 GB 内存, 2080ti 显卡, 使用 Python3.6 语 言、开源框架 Tensorflow2.0 深度学习框架下进行^[20]。在 网络的训练过程中, 选择带动量(momentum)的随机梯度 下降算法作为反向传播的优化器^[21-22], 公式如下:

$$\hat{g} \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x_i; \theta), y_i)$$
(9)

$$v \leftarrow \alpha v - \varepsilon \hat{g} \tag{10}$$

$$\theta \leftarrow \theta + v \tag{11}$$

式中: ε 为学习速率; θ 为初始参数;v为初始速率; α 为动

量衰减参数;g为梯度。

当学习率为 0.01 时,使用变学习率的策略训练,如 果在训练过程中指标没有提升的话,可降低学习率为原 来的 10% 从而提高学习效果^[23]。并设置当准确率在 10 轮内没有进一步提升的时候,自动停止训练并保存最优 结果。实验采用交叉熵损失(categorical_crossentropy loss)函数,每批数据量(batch size)为 8,每轮批数(steps_ per_epoch)为 800,训练周期(epoch)为 150。程序设计将 每轮的当前模型训练集和测试集的准确率和损失值写入 TensorFlow 的可视化工具 Tensor board 中,训练结束后, 会保存最低测试集损失值的模型。以下分别为本文提出 模型和经典卷积网络模型 VCG16 在同一数据集和同一 优化器、损失函数、学习策略的训练结果,模型的准确率 和损失值变化如图 7 和 8 所示。

由图 7 和 8 可以看出, VGG16 模型作为经典的网络 模型, 其在网络的训练过程中准确率的上升速度和损失 值的下降速度是缓慢的。在 20 多轮时, 网络的训练集准 确率接近 100%, 但是测试集的准确率在 90%上下浮动, 模型测试集的准确率基本无法提升了, 在 50 轮停止了训 练。而本文提出的模型前 5 轮左右准确率上升速度很 快, 而损失值下降速度也很快。在 10 轮左右, 网络的训 练集准确率接近 100%, 网络测试集的准确率也接近 100%, 此时训练集和测试集效果已经达到了一个很高的 水平。根据早停策略, 网络在 24 轮已经停止了训练。当 学习率高的时候学习效果波动比较大, 而学习率小的时 候学习效果比较平稳。根据学习率自适应策略,学习率 下降后准确率接近于100%并且损失值也接近一个很低 的数值。表明了模型在训练上表现出来模型的学习效果 很好。

为了体现出本文模型的改进效果,对比了经典模型 与改进模型各自的参数量、内存大小和检测速度,并且为 了评价算法的有效性,还加入准确率、灵敏度和误识别率 作为性能指标来比较^[24],如表2所示。

表 2 网络模型对比 Table 2 Network model comparison

网络	VGG16	本文模型	
参数量	134 305 611	9 879 051	
内存/byte	1 074 570 112	79 537 728	
检测速度/ms	38	34	
准确率/%	95	99.46	
灵敏度/%	95	99.5	
误识别率/%	5.6	0.6	

1)准确率,表示算法能正确识别样本的比例。

$$A_c = \frac{TP + FN}{TP + FN + FP + TN}$$
(12)

2)灵敏度(true positive rate, TPR),表示算法正确识 别目标样本的识别精度。

$$TPR = \frac{TP}{TP + FN} \tag{13}$$

3)误识别率(false positive rate, FPR),表示算法错误 识别目标样本与非目标样本的比例。

$$FPR = \frac{FP}{FP + TN} \tag{14}$$

式中:TP 表示正类判定为正类;FP 表示负类判定为正 类;FN 表示正类判定为负类;TN 表示负类判定为负 类。

在实际检测中,机械结构的运动和相机灯光的影 响势必会造成高调器图像上的位移和噪声等变化。为 了检测本文提出模型在此方面的鲁棒性,进一步进行 试验。首先由于机器结构运动的误差,实际高调器并 不是处理照片的中心,所以将之前识别出来的图片按 照随机垂直水平位移 10 个像素点以内,来进行位移鲁 棒性实验。其次由于相机灯光的变化和图像传输的损 失,会使图片产生噪声。所以对之前识别出来的照片 随机添加 0%~10% 的椒盐噪声来检测鲁棒性,鲁棒性 实验结果如图 9 所示。

从表2和图9可以看出,相比其余两个网络,VGG16 由于没有采用批标准化层,而是采用多层全连接层,导致 模型的参数量过大、训练时间久和准确率不够高的问题。 而本文提出的模型采用了批标准化层,还加入了残差结 构和可分离卷积,这样的结构使得网络在深层网络的情况下还能保持较少的参数量,使得模型训练更加方便且 算法的性能指标也高;不仅检测速度更快而且鲁棒性实 验结果也优于 VGG16。

2.4 网络实际测试

完成模型的训练之后,PC 端利用 Python 程序读取 模型结构及参数并与 PLC 通信,将设备整体放在实际高 度调节器生产车间测试,对每种缺陷类型设置了 500 个 样品,对样品分别测试 3 次,最后得到的缺陷识别结果如 表 3 所示,表 3 中示数为 3 轮检测中被正确检测出缺陷 的样品个数。由此可知,本文设计的改进型卷积网络模 型对汽车高度调节器缺陷识别的总体准确率极高,各类 的准确率都在 99% 以上。

表 3 实际车间高度调节器缺陷识别测试结果表 Table 3 Defect identification test result table of actual workshop height regulator

+人 301 +人 */+	缺陷类型)다미귯 /0/
检测化数 -	1	2	3	- 以利平/ %
右侧错装弹垫验证件	499	499	497	99. 7
右侧多装弹垫验证件	498	497	497	99.4
右侧多装纸垫验证件	497	499	499	99. 7
右侧钩子变形验证件	498	498	500	99. 7
右侧合格	497	499	498	99.6
右侧漏装弹垫验证件	496	498	498	99.4
左侧错装弹垫验证件	499	496	497	99.4
左侧多装弹垫验证件	495	499	499	99.5
左侧多装纸垫验证件	495	497	496	99. 2
左侧合格	495	499	496	99.4
左侧漏装弹垫验证件	499	499	500	99.8

将所有缺陷类型都通过本文的改进型卷积模型进行

识别,每一类都可以很好地被识别,而且区分度特别高, 识别效果矩阵如图 10 所示,基本每一种缺陷类型的检测 结果中正确的分类概率都接近 1。

3 结 论

为了解决高度调节器生产中的缺陷检测人工耗时 耗力和传统诊断方法适用性差的问题,本文提出了一 种基于深度学习的机器视觉识别方法。以汽车高度调 节器图像为对象,实现了对其缺陷的检测识别。利用 卷积自动提取特征突破传统特征突起的复杂性,实现 了比较高的准确率。通过利用 keras 深度学习框架增 加训练的样本,构建出一个完善的库。结合深度学习 近年的发展设计了一种高准确率的轻量化改进型卷积 神经网络,改进型卷积网络结构主要利用卷积层、池化 层、批正则化层、全连接层和分类层,还利用了残差结 构和可分离卷积。利用卷积网络对原始数据进行特征 提取,很大程度上提高了普遍适用性,采用了可分离卷 积和残差模块,在加深网络提高精度的同时减少了参 数量和计算时间,比经典 VGG16 卷积网络具有更低的 耗时和更高的准确率,并且有着更好的鲁棒性。实验 结果表明,本文提出的基于改进型卷积网络的高度调 节器缺陷识别方法在高度调节器缺陷检测上有着良好 的识别精度,一批材料在3次重复性测试实验中识别 率均在99%以上。

本文主要通过深度学习网络来解决高度调节器缺陷 识别,但模型对计算机的配置仍有一定要求。之后,会考 虑如何在保持识别精度条件下,继续缩小模型大小,让模 型在低配置计算机中也能较快地运行。

参考文献

[1] 徐青龙,张露. 汽车座椅高度调节器核心构件优化设计[J]. 汽车工程师,2014(4):23-24.

XU Q L, ZHANG L. Optimization of Vehicle Seat Height Adjustor[J]. Auto Engineer, 2014(4):23-24.

[2] 贺振东, 王耀南, 刘洁, 等. 基于背景差分的高铁钢轨
 表面缺陷图像分割[J]. 仪器仪表学报, 2016, 37 (3):
 640-649.

HE ZH D, WANG Y N, LIU J, et al. Background differencing-based high-speed rail surface defect image segmentation [J]. Chinese Journal of Scientific Instrument, 2016, 37(3):640-649.

 [3] 谢从珍,何子兰,凌永兴,等.相控阵超声波检测复合
 绝缘子内部缺陷[J].中国电机工程学报,2012, 32(S1):63-68.

XIE C ZH, HE Z L, LING Y X, et al. Using ultrasonic phased array to inspect the internal defects of composite insulators [J]. Proceedings of the CSEE, 2012,32(S1): 63-68.

 [4] 焦敬品,李思源,常予,等.集箱管接头内焊缝表面缺陷识别方法研究[J].仪器仪表学报,2017,38(12): 3044-3052.

JIAO J P, LI S Y, CHANG Y, et al. Defect classification of weld surface in header pipe joint[J]. Chinese Journal of Scientific Instrument, 2017,38 (12):3044-3052.

[5] 闵永智,岳彪,马宏锋,等. 基于图像灰度梯度特征的 钢轨表面缺陷检测[J]. 仪器仪表学报,2018,39(4): 220-229.
MING Y ZH, YUE B, MA H F, et al. Rail surface defects_detection_based_on_group_acela_gradient

defects detection based on gray scale gradient characteristics of image[J]. Chinese Journal of Scientific Instrument, 2018,39(4):220-229.

- [6] 郭皓然,邵伟,周阿维,等. 全局阈值自适应的高亮金属表面缺陷识别新方法[J]. 仪器仪表学报,2017, 38(11):2797-2804.
 GUO H R, SHAO W, ZHOU A W, et al. Novel defect recognition method based on adaptive global threshold for highlight metal surface[J]. Chinese Journal of Scientific Instrument, 2017,38(11):2797-2804.
- [7] 苑玮琦,李绍丽,李德健.基于子区域变尺度高斯拟合的木材表面缺陷识别[J]. 仪器仪表学报,2016, 37(4):879-886.

YUAN W Q, LI SH L, LI D J. Wood surface defect recognition based on sub-region zoom Gaussian fitting[J]. Chinese Journal of Scientific Instrument, 2016, 37(4): 879-886.

[8] KRIZHEVSKY A, SUTSKEVER I, HINTON G.

Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):1097-1105.

[9] 徐昭洪,刘宇,全吉成,等. 基于 VGG16 预编码的遥感
 图像建筑物语义分割[J]. 科学技术与工程, 2019, 19(17):250-255.

XU ZH H, LIU Y, QUAN J CH, et al. Buildings egmentation of remote sensing images based on VGG16 pre-encoding[J]. Science Technology and Engineering, 2019,19(17):250-255.

- [10] CHOLLET F. Xception: Deep learning with depthwise separable convolutions [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017:1800-1807.
- [11] 周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计 算机学报,2017,40(6):1229-1251.
 ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.
- [12] 章琳,袁非牛,张文睿,等. 全卷积神经网络研究综述[J]. 计算机工程与应用,2020,56(1):25-37.
 ZHANG L, YUAN F N, ZHANG W R, et al. Review of fully convolutional neural network [J]. Computer Engineering and Applications, 2020,56(1):25-37.
- [13] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks [C]. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011:315-323.
- [14] 蒋怡,黄平,董秀春,等. 基于 Softmax 分类器的小春作物种植空间信息提取[J].西南农业学报, 2019, 32(8):1880-1885,1967.

JIANG Y, HUANG P, DONG X CH, et al. Spatial information extraction of spring crops based on softmax classifier [J]. Southwest China Journal of Agricultural Sciences, 2019,32(8):1880-1885,1967.

- [15] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. Proceedings of the 32nd International Conference on Machine Learning, 2015: 448-456.
- [16] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]. 2016 Ieee Conference on Computer Vision and Pattern Recognition (CVPR), 2016:770-778.

[17] 陆永帅,李元祥,刘波,等. 基于深度残差网络的高光

谱遥感数据霾监测[J]. 光学学报,2017,37(11): 314-324.

LU Y SH, LI Y X, LIU B, et al. Hyperspectral data haze monitoring based on deep residual network [J]. Acta Optica Sinica, 2017,37(11):314-324.

- [18] 刘庆飞,张宏立,王艳玲.基于深度可分离卷积的实时 农业图像逐像素分类研究[J].中国农业科学,2018, 51(19):3673-3682.
 LIUQF, ZHANGHL, WANGYL. Real-time pixelwise classification of agricultural images based on depthwise separable convolution [J]. Scientia Agricultura Sinica, 2018,51(19):3673-3682.
- [19] 陈欣,陈明逊. 基于增强数据集卷积神经网络的 SAR 目标识别方法[J]. 重庆理工大学学报(自然科学),
 2020,34(1):86-93.
 CHEN X, CHEN M X. SAR target recognition based on CNN trained by augmented training samples[J]. Journal of Chongqing University of Technology (Natural
- [20] 刘帆,刘鹏远,李兵,等. TensorFlow 平台下的视频目标 跟踪深度学习模型设计[J]. 激光与光电子学进展, 2017,54(9):283-291.
 LIU F, LIU P Y, LI B, et al. Deep learning model design of video target tracking based on tensorflow platform[J]. Laser & Optoelectronics Progress, 2017, 54(9):283-291.

Science), 2020, 34(1):86-93.

- [21] 沈卉卉,刘国武,付丽华,等. 一种基于修正动量的 RBM 算法[J]. 电子学报,2019,47(09):1957-1964.
 SHEN H H, LIU G W, FU L H, et al. An algorithm based on modified momentum using restricted boltzmann machine[J]. Acta Electronica Sinica, 2019, 47(9): 1957-1964.
- [22] SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning [C]. International Conference on Machine Learning, 2013:1139-1147.
- [23] 陈超,齐峰. 卷积神经网络的发展及其在计算机视觉 领域中的应用综述[J]. 计算机科学,2019,46(3): 63-73.

CHEN CH, QI F. Review on development of convolutional neural network and its application in computer vision [J]. Computer Science, 2019, 46(3): 63-73.

[24] 王飞,张莹,印豪,等. 多尺度残差网络模型的研究及
 其应用[J]. 电子测量与仪器学报,2019,33(4):
 19-28.

WANG F, ZHANG Y, SHAO H, et al. Research and application of the multi-scale residual networks model[J]. Journal of Electronic Measurement and Instrumentation, 2019,33(4):19-28.

作者简介

鲍光海(通信作者),2000 年和 2011 年 于福州大学分别获得学士学位和博士学位, 现为福州大学副教授,主要研究方向为电器 及其系统智能化与故障诊断。

E-mail:19428733@ qq.com

Bao Guanghai (Corresponding author) received his B. Sc. and Ph. D. degrees both from Fuzhou University in 2000 and 2011, respectively. Now, he is an associate professor in Fuzhou University. His main research interests include intelligentization and fault diagnosis of electrical appliance and its system.

林善银,2018 于厦门理工学院获得学士 学位,现为福州大学硕士研究生,主要研究 方向为人工智能算法。 E-mail:924274383@qq.com

Lin Shanyin received his B. Sc. degree from Xiamen University of Technology in 2018. Now, he is a M. Sc. candidate in Fuzhou University. His main research interests include artificial intelligence algorithm.

徐林森,从2008年开始,从事汽车行业 汽配零部件的质量管理、零部件开发和管 理。现任慈溪亚路车辆配件有限公司副总 经理。

E-mail:13685891084@163.com

Xu Linsen has been engaged in the auto part quality management, auto part development and management in auto industry since 2008. He is now a deputy general manager in Cixi Yalu Vehicle Accessories Co., Ltd.