基于 PID 搜索优化的 CNN-LSTM-Attention 铝电解槽电解温度预测方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH181

基金项目:

重庆市自然科学基金创新发展联合基金项目(CSTB2024NSCQ-LZX0166)、重庆英才·创新创业示范团队项目( cstc2024ycjhbgzxm0131)、科技转化重大项目(H20201555)资助


Research on CNN-LSTM-Attention aluminum electrolyzer electrolysis temperature prediction method based on PID search optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    铝电解生产环境恶劣,受电场、磁场、流场、温度场等多物理场耦合影响,导致铝电解生产过程故障频发。 铝电解温度是 影响铝电解槽寿命和运行状态的重要参数,但由于槽内温度很高且具有强烈腐蚀性,至今尚未找到有效的电解温度在线检测与 预测方法。 为了解决这一技术难题,通过理论分析结合现场实验验证,揭示了铝电解槽电解温度与其工艺参数间的密切相关 性,并据此提出一种基于深度学习的铝电解槽电解温度预测模型。 考虑到铝电解槽工艺参数的复杂性、非线性、高维度、时序性 等特征,采用卷积神经网络(CNN)用于提取数据的高维特征,长短期记忆网络用于建模(LSTM),处理铝电解生产过程中的时 序数据,引入了注意力机制(Attention),学习输入参数不同部分之间的关联性,同时根据输入数据的重要程度进行加权处理,并 采用 PID 搜索优化算法(PSA)对 CNN-LSTM-Attention 模型的参数进行寻优,减少训练时间并提高模型的性能。 最后经铝电解 实际生产数据进行现场实验验证,结果表明:提出的温度预测模型相关指数(R 2 )为 0. 963 7,均方根误差(RMSE)和平均绝对误 差(MAE)分别为 5. 417 6 和 3. 382 5,与单一模型算法、其他预测算法和不同优化算法对比验证表明,该模型的性能更佳,能够 准确预测铝电解槽电解温度,实现了铝电解槽电解温度的在线检测。

    Abstract:

    The aluminum electrolysis production environment is harsh, influenced by the coupling of multiple physical fields such as electric, magnetic, flow, and temperature fields, leading to frequent failures during the production process. The temperature of the aluminum electrolysis cell is a crucial parameter that affects the lifespan and operational status of the electrolysis tank. However, due to the high temperatures and corrosive nature of the tank, no effective online detection or prediction method for electrolysis temperature has been established so far. To address this issue, this study reveals the close correlation between the electrolysis temperature of aluminum electrolyzers and their process parameters through theoretical analysis and on-site experimental validation. Based on this, a deep learning-based model for predicting the electrolysis temperature is proposed. Considering the complexity, nonlinearity, high dimensionality, and temporal sequence of the process parameters, Convolutional Neural Networks (CNN) are employed to extract highdimensional features from the data, while Long Short-Term Memory (LSTM) networks are used for modeling. Additionally, the Attention mechanism is introduced to capture the relationships between different parts of the input parameters and to weigh the data according to its importance. A PID-based Search Algorithm ( PSA) is applied to optimize the CNN-Attention model for the aluminum electrolysis process, reducing training time and improving model performance. Experimental results demonstrate that the proposed temperature prediction model achieves a correlation index (R 2 ) of 0. 963 7, with a Root Mean Square Error (RMSE) of 5. 417 6 and a Mean Absolute Error (MAE) of 3. 382 5. A comparison with single-model algorithms, other prediction models, and different optimization techniques shows that the proposed model significantly outperforms them. The model successfully predicts the electrolysis temperature of the aluminum electrolyzer, enabling real-time, online detection of the electrolysis temperature during production.

    参考文献
    相似文献
    引证文献
引用本文

尹 刚,朱 淼,全鹏程,颜玥涵,刘期烈.基于 PID 搜索优化的 CNN-LSTM-Attention 铝电解槽电解温度预测方法研究[J].仪器仪表学报,2025,46(1):324-337

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-08
  • 出版日期:
文章二维码