DOI: 10. 13382/j. jemi. B2104322

基于 LSA-MP 改进原子分解的 电能质量数据压缩方法*

袁莉芬 刘 韬 何怡刚 张鹤鸣 束海星 (合肥工业大学电气与自动化工程学院 合肥 230009)

摘 要:电能质量数据压缩是电能质量问题检测和识别中的重要步骤,其本质即为探寻电能质量稀疏特征的过程。针对稀疏分 解中常用的匹配追踪算法在匹配最佳原子时计算复杂度高、耗时长,不能满足电力信号分析实时性要求的问题,应用收敛精度 高、收敛速度快以及全局寻优能力强的闪电搜索算法搜索最佳原子,提出了闪电搜索匹配追踪算法。利用所提算法在构建的电 能质量相关原子库中对电能质量信号进行原子分解,提取电能质量特征参数,将提取到的参数作为压缩后的电能质量数据,实 现电能质量数据压缩。实验结果表明,所提算法匹配最佳原子的耗时约缩短为原算法的1/98,基于所提算法的电能质量数据 压缩方法在匹配最佳原子满足电力信号分析的实时性要求,具有较高的压缩率和较低的重构误差,提高了数据压缩的性能。 关键词:原子分解;匹配追踪算法;闪电搜索算法;电能质量;数据压缩

中图分类号: TN919.5; TM76 文献标识码: A 国家标准学科分类代码: 510.4030

Power quality data compression method based on lightning search algorithm and atomic decomposition

Yuan Lifen Liu Tao He Yigang Zhang Heming Shu Haixing

(School of Electrical and Automation Engineering, Hefei University of Technology, Hefei 230009, China)

Abstract: Power quality data compression is an important step in the detection and identification of power quality problems. Its essence is the process of exploring power quality sparse features. Aiming at the problem that the matching pursuit algorithm commonly used in sparse decomposition cannot meet the real-time requirement of power signal analysis because of its high computational complexity and long time-consuming in matching the best atom, a lightning search matching and tracing algorithm is proposed by applying the lightning search algorithm with high convergence precision, fast convergence speed and strong global search ability to search the best atom. The proposed algorithm is used to decompose the power quality signal into atoms and extract the characteristic parameters of power quality, and the extracted parameters are used as the compressed power quality data, realization of power quality data compression. The experimental results show that the time of the proposed algorithm to match the best atom is reduced to 1/98 of the original algorithm, and the power quality data compression method based on the proposed algorithm meets the real-time requirement of power signal analysis when the best atom is matched, with high compression ratio and low reconstruction error, the performance of data compression is improved.

Keywords: atomic decomposition; matching pursuit algorithm; lightning search algorithm; power quality; data compression and reconstruction

0 引 言

现代电网中存在各种电力电子设备和大量非线性负载给电网带来谐波、幅值波动、相位偏差等一系列电能质

量污染问题^[1]。为了有效地实现电能质量的监测和分 析,必须对电能质量数据进行检测和识别^[2]。对于整个 电力系统而言,电网数据长期、不间断的采集,会带来海 量电能质量测试数据,导致数据存储空间紧张^[3],此外大 规模测试数据的传输将导致系统通信功耗激增,导致系

收稿日期:2021-05-19 Received Date: 2021-05-19

^{*}基金项目:国家重点研发计划"重大科学仪器设备开发"项目(2016YFF0102200)、国家自然科学基金重点项目(51637004)资助

统生存周期大大缩减。因此,研究高压缩率低失真度的 电能质量数据压缩方法是电能质量检测和识别过程中亟 待解决的关键问题之一^[4]。

常用的电能质量数据压缩问题信号分析方法有傅里 叶变换(Fourier transform, FT)^[5]、短时傅里叶变换 (short-time Fourier transform, STFT)^[6]、小波变换(wavelet transform, WT)^[7]、S变换(S-transform)^[8]、希尔伯特-黄 变换(Hilbert-Huang transform, HHT)^[9]和 Prony 算法^[10] 等。傅里叶变换描绘的是'全局性'的频谱特征,不能反 应时间轴上局部区域的特征,仅适用于稳态信号分析,对 于非平稳信号不能有效的反应其特征;短时傅里叶变换 在时间上加固定的时间窗函数,使其可以反应局部时间 特征,但固定的窗函数灵活性较差,不能适应复杂多变的 信号:小波变换的时频局部分析能力较强,但如何选择合 适的小波基是一个难题;S变换的性能与采样率、分析频 带的选取相关,自适应性差;希尔伯特-黄变换和 Prony 算 法不能用来分析离散信号。此外,上述常用方法都未能 考虑电能质量先验信号模型特征,导致电能质量信号压 缩性能难以实现最优化。

电能质量数据压缩本质上是一个信号的稀疏表示问题。为了实现对信号的稀疏表示, Coifman R 和 Wickerhauser V 提出了基于原子的信号稀疏分解方法, Mallat S 和 Zhang Z 在此基础上提出了最优原子匹配追踪算法(matching pursuits, MP)。原子稀疏分解是在一组过完备、过冗余的非正交基上对信号进行分解,由于分解过程中更多的考虑了信号先验知识,可以自适应地从基函数中选择与信号特征最佳匹配的基函数,使分解后的信号能量分布更加集中, 从而可以实现用更少的分量表示原信号,得到高度稀疏的分解信号^[11-13]。

原子稀疏分解方法的关键在于原子库的构建和最佳 匹配原子的搜索。电能质量扰动信号类型主要包括谐 波、电压暂降、电压中断、电压暂升、电压波动和闪变、电 压尖峰、电压切痕以及振荡等[14],这些都可以利用不同 的基函数进行描述,若以此为先验知识,构建电能质量信 号稀疏分解原子库,结合最佳匹配原子搜索算法,则可以 实现信号的最大稀疏表示。MP 算法是经典的原子稀疏 分解算法,但该算法在求解最佳匹配原子时,采用全局搜 索的方式,需要遍历整个原子库,因此计算复杂度高、运 算量大,若将其直接应用于电能质量信号压缩则不能满 足系统实时性要求^[15]。文献[16]指出, MP 算法本质上 属于最优化问题求解,文献[17]基于此提出了一种差分 进化算法改进 MP 算法的 EMP 算法。闪电搜索算法 (lightning search algorithm, LSA)^[18]模拟自然界中下行负 地闪的梯级先导传播机制及其分叉特征,将局部搜索与 全局搜索相结合,利用个体局部信息和群体全局信息指 导算法求得最优解。若引入 LSA 算法求解 MP 算法中的

最优化问题 (LSA-MP 算法),则可解决 MP 算法因原子 索引步长带来的精度和耗时的矛盾,加快原子搜索进程, 确保信号稀疏分解时的实时性。为此,以电能质量先验 知识构建相关原子库,提取电能质量信号的特征参数,以 此为基础依据进行电能质量数据压缩。实验结果表明, 应用所提电能质量数据压缩方法,在保留优良的信号重 构精度的前提下,大大降低了计算复杂度,减少了计算时 间,满足电能质量数据压缩的实时性要求。

1 电能质量问题及原子分解压缩方法

1.1 常见电能质量问题

根据电磁干扰现象可将电能质量问题分为稳态和暂态两种情况。稳态电能质量问题是指因电压波形畸变而引起的各种电压质量问题,主要包括:谐波和间谐波、陷波、电压波动与闪变、三相电压不对称等;暂态电能质量问题分类依据在于扰动信号的幅值变化、持续时间和频率变化,主要包括电压暂降、电压暂升、电压中断、暂态振荡、电压尖峰、电压切痕和暂态谐波等。关于电能质量问题分类的讨论有很多,本文主要考虑单相的电能质量问题,其模型依据为 IEEE 制定的电力系统电磁现象特性参数及分类标准^[1]。

1.2 基于稀疏分解理论的信号压缩

对于 Hilbert 空间中的连续信号 f, 自适应地从原子 库 $D = \{g_i, i \in \Gamma\}$ (Γ 为含有 N 个元素的有限指标集)中 选择与其最相似的原子 g_i , 得到信号 f 的一个近似表达,即稀疏分解:

$$f_{sparse} = \sum_{i}^{n} k_{i} g_{i} \tag{1}$$

式中: k_i 是常系数; n 为稀疏分解后的原子个数。

原子稀疏分解有两个核心问题,如何根据信号自身的特征构建合适的过完备原子库,以及如何从过完备原 子库中自适应地寻找最佳匹配原子^[11]。

寻找最佳匹配原子时通常采用贪婪迭代逼近的 MP 算法,其算法流程如图 1 所示。

根据图1可知, MP 算法的具体步骤如下。

1)初始化参数设置,迭代次数置0、初始残差信号等 于原始信号、迭代终止条件设置。

2)按照一定的索引方式扫描过完备原子库,依次计 算残差信号与原子的内积值,选择内积值最大的原子作 为最佳匹配原子。

3)更新残差信号,更新后的残差信号是从当前残差 信号中去除最佳匹配原子之后的信号。

4)判断迭代终止条件是否满足,若满足则算法终止, 将原始信号表示为若干个原子的线性组合;否则返回步 骤2)继续下一次迭代。

图 1 MP 算法流程

Fig. 1 Flowchart of matching pursuit algorithm

原子稀疏分解理论更多的考虑待分析信号本身的特征,根据待分析信号的先验信息构建过完备原子库,利用 原子分解算法自适应地选择与原信号最佳匹配原子,逐 步提取原信号的主要特征,通过提取到的少量特征参数 和原子实现信号重构。因此,若利用原子稀疏分解理论 来实现数据压缩,则可以实现较高的压缩率。

2 基于 LSA-MP 算法的电能质量数据压缩 方法

电能质量数据压缩本质上是一个信号的稀疏表示问题,且电能质量问题具有丰富的先验知识,将信号稀疏分 解技术与电能质量先验知识相结合,可挖掘电能质量信 号的最大稀疏特征,用较少的参数和原子表示信号,实现 电能质量信号的最大压缩比,压缩的基本技术流程如 图2所示。

电能质量信号采集→基于先验知识构建原子库→最佳匹配原子搜索
存储、传输和重构信号+电能质量信号稀疏表示+提取电能质量稀疏特征+
图 2 压缩基本技术流程

2.1 电能质量相关原子库的构建

衰减正弦量原子能直接体现信号的频率、相位、扰动 起止时刻和波形等的特征,可用来构建电能质量相关原 子库,包括谐波原子库、类基波原子库、电压波动和闪变 原子库、脉冲原子库以及振荡原子库^[18]。 设原始信号f(t)采样频率为 f_s ,信号长度为N,构造的各原子库如下。

1) 谐波原子库

谐波原子库用于提取电能质量信号中的基波分量、 谐波和间谐波扰动、其原子表达式为:

$$g_{\gamma 1}(t) = K_{\gamma 1} \sin(2\pi f_1 t + \varphi_1)$$
 (2)

式中: K_{γ_1} 为归一化因子: f_1 和 φ_1 分别为基波频率和初相 位, 它们对应的离散域形式如式(3)、(4)。

$$f_1 = \frac{i}{N} f_s, i \in [0, N] \in \mathbb{Z}$$
(3)

$$\varphi_1 = \frac{2\pi}{N} j, j \in [0, N] \in Z$$
(4)

则原子索引 $\gamma_1 = (i,j)$ 。

2) 类基波原子库

类基波原子库用来提取电能质量信号中的电压暂 降、电压暂升和电压中断扰动,其原子表达式为:

$$g_{\gamma 2}(t) = K_{\gamma 2} \sin(2\pi f_1 t + \varphi_1) \left[u(t - t_{s2}) - u(t - t_{s2}) \right]$$
(5)

式中:u(t)为单位阶跃函数, t_{s2} 和 t_{s2} 分别为类基波扰动 的起始时刻和终止时刻,它们对应的离散域形式 如式(6)。

$$t_{s2} = \frac{n_{s2}}{f_s}, t_{e2} = \frac{n_{e2}}{f_s}, n_{s2}, n_{e2} \in [0, N] \in Z$$

$$\text{MBF-SR} \gamma_2 = (n_{s2}, n_{e2})_{\circ}$$

$$\text{MBF-RE}$$

$$(6)$$

脉冲原子库用来提取电能质量信号中的电压尖峰和 切痕扰动,其原子表达式为:

 $g_{\gamma3}(t) = K_{\gamma3}[u(t - t_{s3}) - u(t - t_{e3})]$ (7) 式中: t_{s3} 和 t_{e3} 分别为脉冲扰动的起始时刻和终止时刻, 它们对应的离散域形式如式(8)。

$$t_{s3} = \frac{n_{s3}}{f_s}, t_{e2} = \frac{n_{e3}}{f_s}, n_{s3}, n_{e3} \in [0, N] \in Z$$
(8)

则原子索引 $\gamma_3 = (n_{s3}, n_{e3})$ 。

4) 电压波动和闪变原子库

电压波动和闪变原子库用来提取电能质量信号中的 电压波动和闪变扰动,其原子表达式为:

 $g_{\gamma4}(t) = K_{\gamma4}\sin(2\pi f_4 t + \varphi_4)\sin(2\pi f_1 t + \varphi_1)$ (9) 式中: $f_4 和 \varphi_4$ 分别为电压波动和闪变扰动的频率和初相 位,它们对应的离散域形式如式(10)、(11)。

$$f_4 = \frac{i_4}{N} f_s, i_4 \in [0, N] \in \mathbb{Z}$$

$$(10)$$

$$\varphi_4 = \frac{2\pi}{N} j_4, j_4 \in [0, N] \in \mathbb{Z}$$
(11)

则原子索引 $\gamma_4 = (i_4, j_4)$ 。

5) 振荡原子库

振荡原子库用来提取电能质量信号中的发散振荡、

收敛振荡及暂态谐波等扰动,其原子表达式为:

$$g_{\gamma 5}(t) = K_{\gamma 5} e^{-\rho_5(t-t_{s5})} \sin(2\pi f_5 t + \varphi_5) \left[u(t-t_{s5}) - u(t-t_{s5}) \right]$$
(12)
$$\exists t - t_{s5} = 0$$
(12)
$$\exists t - f_5 \cdot \varphi_5 \cdot t_{s5} \cdot t_{s5} = \pi \rho_5 \beta \beta \beta \xi = 0$$

位、起始时刻、终止时刻及衰减系数它们的离散域形式如式(13)~(16)。

$$f_5 = \frac{\iota_5}{N} f_s, i_5 \in [0, N] \in \mathbb{Z}$$
(13)

$$\varphi_5 = \frac{2\pi}{N} j_5, j_5 \in [0, N] \in \mathbb{Z}$$
(14)

$$t_{s5} = \frac{n_{s5}}{f_s}, t_{e5} = \frac{n_{e5}}{f_s}, n_{s5}, n_{e5} \in [0, N] \in Z$$
(15)

$$\rho_5 = \frac{k}{N} f_s, k \in [0, N] \in \mathbb{Z}$$
(16)

则原子索引 $\gamma_5 = (i_5, j_5, n_{s5}, n_{e5}, k)$ 。

2.2 基于 LSA 改进 MP 的原子分解算法

MP 算法每次迭代搜索最佳匹配原子时,需要遍历

整个原子库,计算原始信号(或残差信号)与原子库中每 一个原子的内积值,导致该算法计算量大。文献[16]指 出,MP 算法每次迭代求解最佳匹配原子的过程,可以转 化式(17)所示的最优化问题。

$$|\langle R_{f}^{k}, g_{\gamma k} \rangle| = \sup_{\gamma \in \Gamma} |\langle R_{f}^{k}, g_{\gamma k} \rangle|$$
(17)

式中: R_f^* 表示残差信号; $g_{\gamma k}$ 表示原子库中的原子。

LSA 是由 Shareef 等在 2015 年提出的一种基于闪电 机理的新型元启发式优化算法,通过模拟自然界中下行 负地闪的梯级先导传播机制及其分叉特征,求得放电体 中最长最先到达地面的阶梯先导,即最优解。LSA 算法 的求解过程将局部搜索与全局搜索相结合,利用个体局 部信息和群体全局指导算法求得最优解,可确保系统优 化求解过程中对实时性与精确性的需求,若将其用于 MP 迭代过程中最优原子的搜索,则可在确保信号分解准确 性的同时,提升信号分解的速度。为此,提出融合 LSA 算法与 MP 算法的 LSA-MP 最佳原子匹配追踪算法,其 流程如图 3 所示。

图 3 LSA-MP 算法流程 Fig. 3 Flowchart of LSA-MP

以搜索一个最佳原子为例,说明 LSA-MP 算法求解 最佳匹配原子的具体步骤如下。

1) 初始化参数设置

种群规模 Num、最大迭代次数 Max_iteration、放电体 各变量的搜索边界上限值 up = N、搜索边界下限值 low = 0; 种群内各放电体的初始梯级先导尖端能量设置如下: $Dpoint_d = (x_{d_1}, \dots, x_{d_{dim}}) = (rand \cdot (up - low) + low, \dots, rand \cdot (up - low) + low)$ (18) 式中:N 是原始信号的长度; dim 是各原子库中原子索引的维数; d = 1,2,3, ..., Num; rand 表示 0 ~ 1 的随机数。 适应度函数设置如下.

$$fobj(x_d) = |\langle R_f, g_\gamma \rangle |, x_d = [x_{d_1}, \cdots, x_{d_{dim}}]$$
(19)

2) 进入主循环

将生成的各放电体的初始梯级先导尖端能量代入适 应度函数计算适应度值,将求得的各放电体的适应度值 进行降序排列,确定最优个体和最差个体。

3) 判断是否达到最大道道时间

通道时间 ch_time 初始值为0,每循环1次 ch_time 加 1,若达到最大通道时间 max_time,则将当前种群中最优 个体的梯级先导尖端能量赋给最差个体,重置通道时间, 否则转入下一步骤。

4) 更新放电体的方向和能量

将步骤 2) 得到的最优梯级先导尖端能量为 $Dpoint_{best} = (x_1, \dots, x_{dim}), 令 Dpoint_{test} = Dpoint_{best}, 对$ $Dpoint_{test}$ 中的变量进行更新:

$$x'_{1} = x_{1} + direct(1) \cdot 0.005 \cdot (up - low)$$

$$\vdots$$

$$x'_{dim} = x_{dim} + direct(dim) \cdot 0.005 \cdot (up - low)$$

(20)

其中方向矩阵 direct 为1行 dim 列的随机 ±1矩阵。 将更新结果代入适应度函数得到新的适应度值,若新的 适应度值比先前适应度值大则按原方向保持不变,否则 将方向更改为 - direct。

5) 执行空间放电体和引导放电体模型

各梯级先导能量与 Dpoint_{best} 的差值向量记作 Dist, 判断 Dist 是否为零向量, 若是则更新向量:

 $Dpoint_{temp}(e) = Dpoint_{d}(e) + direct(e) \cdot$ abs(normrnd(0, Energy)) (21)式中: normrnd 是正态分布函数生成的随机数, e = 1,2,..., dim。Energy 计算如下:

 Energy = 2.05 - 2 · EXP(- 5 · (Max_iter - Now_iter)/Max_iter)
 (22)

 式中: Now_iter 为当前迭代次数。若 Dist(e) > 0,则更

新能量:

 $Dpoint_{temp}(e) = Dpoint_d(e) - exprnd(dist(e))$ (23) 式中: exprnd 表示按指数分布函数生成的随机数。若 Dist(e) < 0,则更新能量:

 $Dpoint_{temp}(e) = Dpoint_{d}(e) - exprnd(abs(dist(e)))$ (24)

判断更新后的能量是否超出搜索边界的上下限,若 超出则将其置为:

$$Dpoint_{temp}(e) = rand \cdot (up - low) + low$$
(25)
6) 比较最优值

将得到的最优梯级先导尖端能量代入适应度函数得 到新的适应度值,与步骤 2)得到的最优值进行比较,若 大于则转入步骤 7),否则转入步骤 8)。

7) 更新 $Dpoint_{best} = Dpoint_{temp}$ 检查放电体是否分叉,其操作如下: 生成一个 $0 \sim 1$ 之间的随机数,若该随机数<0.01,则认为放电体发生分 叉,则得到一个对称通道,该通道的能量为搜索边界的上 限和下限之和减去原通道能量,将两个不同能量代入适 应度函数,选择适应度值较大的通道,保持种群规模不 变;若没有发生分叉则直接将两个不同能量代入适应度 函数,选择适应度值较大的通道,保持种群规模不变。上 述操作完成后转入步骤9)。

8)保持 Dpoint_{best} 不变,转入步骤 9)

9)判断是否达到终止条件

当达到最大迭代次数时即满足算法的终止条件,则 算法停止,输出最优解,获得最佳匹配原子;否则转至步 骤2),增加迭代次数和通道时间,继续下一代搜索。

2.3 改进 LSA-MP 算法的电能质量数据压缩

电能质量信号的原子稀疏分解可以利用 2.1 节的方 法构建过完备原子库,利用 2.2 节的 LSA-MP 算法可完 成电能质量信号最佳匹配原子的搜索,并以此为基础,提 取电能质量信号特征,完成电能质量数据压缩,可以进行 存储和传输,以及重构原始电能质量信号。具体的电能 质量信号压缩过程及电能质量信号特征参数提取方法 如下。

1)利用 LSA-MP 算法在构建的谐波原子库上对原始 信号进行原子稀疏分解,提取基波频率和相位。

2)采用基于录波特性的基波幅值修正方法^[19],对基 波幅值进行修正,以排除电能质量信号中可能存在的类 基波扰动对基波分量幅值的影响。

3)利用 LSA-MP 算法在构建的类基波原子库上对残 差信号进行原子稀疏分解,提取类基波扰动的起止时刻, 计算类基波扰动的幅值。

4)利用 LSA-MP 算法在构建的脉冲原子库上对残差 信号进行原子稀疏分解,提取脉冲扰动的起止时刻,计算 脉冲扰动的幅值。

5)利用 LSA-MP 算法在构建的谐波原子库上对残差 信号进行原子稀疏分解,提取谐波和间谐波扰动的频率 和相位,计算谐波和间谐波扰动的幅值。

6)利用 LSA-MP 算法在构建的电压波动和闪变原子 库上对残差信号进行原子稀疏分解,提取电压波动和闪 变扰动的频率、相位和起止时刻,计算电压波动和闪变扰 动的幅值。

7)利用 LSA-MP 算法在构建的振荡原子库上对残差 信号进行原子稀疏分解,提取振荡扰动的频率、相位、衰 减系数和起止时刻,计算振荡扰动的幅值。

8)判断是否满足迭代终止条件,若满足,则特征参数 提取结束;否则重复步骤3)~7),直到满足迭代终止 条件。

上述提取过程中,若含有多个单一扰动信号特征,则 按照扰动信号能量的大小依次输出提取到的特征参数。 步骤 3)~7)的扰动幅值计算方法如下:当前残差信号为 R_f ,从相应的原子库中匹配到的最佳原子为 $g_{\gamma(opt)}, K_{\gamma}$ 为 归一化因子。则有:

$$g_{\gamma(opt)} = K_{\gamma}g_{(opt)} \tag{26}$$

式中: $g_{(opt)}$ 是各原子库中归一化之前的原子解析表达式。可以计算出 K_{γ} :

$$K_{\gamma} = \frac{1}{\sqrt{\langle g_{(opt)}, g_{(opt)} \rangle}}$$
(27)

则扰动幅值 A 为:

$$A = K_{\gamma} \langle R_{f}, g_{\gamma(opt)} \rangle$$
4. (28)
提取到的基本分量和各批动信号的频率 幅值 相位

和扰动的起始时刻等特征参数即为压缩后的电能质量数

据,压缩后的电能质量数据大小与原始信号的长度无关, 仅仅与原始信号中所含有的扰动个数和类型相关,与原 信号相比数据量非常小,可以实现较高的压缩率。

3 实验仿真与方法验证分析

3.1 电能质量仿真模型的构建

参考 IEEE 制定的电力系统电磁现象特性参数及分 类标准^[1],可构建表1所示的电能质量仿真模型,包括7 种单一扰动模型和3种复合扰动模型,采样频率为 3200 Hz,信号长度为1024个采样点。

表 1 电能质量扰动信号仿真模型 Table 1 Power quality perturbation signal simulation model

扰动信号类型及序号	表达式	参数($A = 1$ p.u. $f = 50$ Hz, $\omega = 2\pi f, t = 1/f$,) u(t)为单位阶跃函数
1 电压暂升	$A\sin(\omega t) \{ 1 + k [u(t - t_1) - u(t - t_2)] \}$	$k = 0.1 \sim 0.8; T \le t_2 - t_1 \le 9T$
2 电压暂降	$A\sin(\omega t) \{ 1 - k [u(t - t_1) - u(t - t_2)] \}$	$k = 0.1 \sim 0.9; T \le t_2 - t_1 \le 9T$
3 电压中断	$A\sin(\omega t) \{ 1 - k[u(t - t_1) - u(t - t_2)] \}$	$k = 0.9 \sim 1; T \le t_2 - t_1 \le 9T$
4 脉冲扰动	$A\sin(\omega t) + k[u(t-t_1) - u(t-t_2)]$	$\begin{array}{l} (-\ 0. 4 \leqslant k \leqslant - \ 0. 1) \ \cup \ (0. 1 \leqslant k \leqslant 0. 4) \\ 0 \ < \ t_2 \ - \ t_1 \ \leqslant \ 0. 5T \end{array}$
5 电压波动和闪变	$A\sin(\omega t) \left[1 + k\sin(\beta \omega t + \varphi_1) \right]$	$k = 0.05 \sim 0.1; \beta = 0.1 \sim 0.5; \varphi_1 = 0 \sim 2\pi$
6 谐波和间谐波	$A\sin(\omega t) + k_1 \sin(3\omega t) + k_2 \sin(5\omega t) + k_3 \sin(7\omega t) + k_4 \sin(m\omega t)$	$k_1, k_2, k_3, k_4 = 0.05 \sim 0.3$ $0 < m \le 11$
7 衰减振荡	$A\sin(\omega t) + ke^{-\rho(t-t_1)}\sin(2\pi\beta f t + \varphi_1) [u(t-t_1) - u(t-t_2)]$	$k = 0.1 \sim 0.8; \beta = 6 \sim 18$ 0.5T \le t_2 - t_1 \le 2.5T $\varphi_1 = 0 \sim 2\pi; 25 \le \rho \le 330$
8 电压暂升+脉冲 扰动+衰减振荡	$Asin(\omega t) \{ 1 + k_1 [u(t - t_1) - u(t - t_2)] \} + k_2 [u(t - t_3) - u(t - t_4)] + k_3 e^{-\rho(t - t_5)} sin(2\pi\beta ft + \varphi_1) [u(t - t_5) - u(t - t_6)]$	$\begin{split} k_1 &= 0.1 \sim 0.8; T \leq t_2 - t_1 \leq 9T \\ (-0.4 \leq k_2 \leq -0.1) &\cup (0.1 \leq k_1 \leq 0.4) \\ 0 < t_4 - t_3 \leq 0.5T \\ k_3 &= 0.1 \sim 0.8; \beta = 6 \sim 18 \\ \varphi_1 &= 0 \sim 2\pi; 25 \leq \rho \leq 330 \\ 0.5T \leq t_6 - t_5 \leq 2.5T \end{split}$
9 电压暂降+谐波+ 脉冲扰动	$A\sin(\omega t) \{ 1 - k_1 [u(t - t_1) - u(t - t_2)] \} + k_2 \sin(\omega t) + k_3 [u(t - t_3) - u(t - t_4)]$	$k_1 = 0.1 \sim 0.9; T \le t_2 - t_1 \le 9T$ $0 < m \le 11; 0 < t_4 - t_3 \le 0.5T$
10 电压中断+ 电压波动和闪变+ 短时谐波	$A\sin(\omega t) \{ 1 - k_1 [u(t - t_1) - u(t - t_2)] + k_2 \sin(\beta \omega t + \varphi_1) \}$ $k_3 \sin(2\pi\beta_1 f t + \varphi_2) [u(t - t_3) - u(t - t_4)]$	$k_{1} = 0.9 \sim 1; T \leq t_{2} - t_{1} \leq 9T$ $k = 0.05 \sim 0.1; \beta = 0.1 \sim 0.5; \varphi_{1} = 0 \sim 2\pi$ $\varphi_{2} = 0 \sim 2\pi; 0.5T < t_{4} - t_{3} \leq 2.5T$ $k_{3} = 0.05 \sim 0.3; \beta_{1} = 1 \sim 11$

3.2 LSA-MP 算法的性能分析

利用提出的 LSA-MP 算法对典型的电能质量扰动信号进行分解,与 MP 算法和 EMP 算法^[20]比较,分析 LSA-MP 算法的性能。

原子分解算法对仿真环境的依赖程度较高,在不同的仿真环境下,仿真耗时差距可能较大。本文仿真时的电脑为 Win7 系统,处理器为 Intel(R) Xeon(R) CPU E3-1231@ 3.40GHz,内存为 8 GB。

仿真时 LSA 算法的种群规模 Num = 50, 最大迭代次

数 Max_iteration = 80, 电能质量模型为表 1 的 7 种单一扰动信号, 每种扰动信号类型随机生成 100 个, 并添加 30 dB 的高斯白噪声, 分别利用 LSA-MP 算法、MP 算法和 EMP 算法对生成的电能质量信号原子分解, 记录各算 法匹配最佳原子的耗时和内积, 结果如表 2 所示。

当过完备原子库中的原子和原始(残差)信号的内积最大时,此时的原子为最佳匹配原子,因此内积值越大说明挑选的原子最佳,原子匹配的精度越高。根据表 2的内积数据可知,对于所有的扰动信号类型,LSA-MP 算

法、EMP 算法和 MP 算法在原子分解时得到的内积值没 有显著性区别。根据表 2 的耗时数据可知, LSA-MP 算法 和 EMP 算法匹配最佳原子的耗时与 MP 算法相比, 区别 较大。MP 算法匹配最佳原子的耗时大约是 EMP 算法的 52 倍以及 LSA-MP 算法的 98 倍,对于同样利用智能优化 算法改进 MP 算法的 EMP 算法和 LSA-MP 算法,前者匹 配最佳原子的耗时大约是后者的 2 倍。

信旦	信旦八仞	MP		EMP		LSA-MP	
	百万所	·	耗时		耗时		耗时
伃号	类型	内积 玛詛	均值/s	囚积 均值	均值/s		均值/s
1	原始信号	24.3899	18.234 3	24.3545	0.358 0	24. 382 7	0. 190 7
1	残差信号	3.4405	18.124 5	3.429 0	1.339 4	3.429 6	0.2777
2	原始信号	20. 431 6	18.435 6	20.3663	0.3587	20.434 0	0. 191 4
Z	残差信号	3.527 5	18.254 8	3.573 0	1.346 3	3. 529 0	0.388 6
2	原始信号	18.4604	18.595 2	18.440 6	0.3584	18.457 8	0. 194 7
3	残差信号	8.8860	18.6264	8.8837	1.359 0	8.8970	0.264 9
4	原始信号	22.7677	18.753 1	22.7667	0.363 1	22.774 5	0.1837
4	残差信号	1.167 5	5.391 5	1.1607	0.454 2	1.159 2	0.226 3
5	原始信号	22.6317	18.710 2	22.3980	0.3599	22.637 0	0.189 5
3	残差信号	1.086 1	24.801 6	1.087 6	0.916 2	1.079 2	0.439 2
(原始信号	22. 583 5	18.8995	22.413 9	0.3587	22.585 3	0.1942
0	残差信号	5.703 8	74.2463	6.0267	2.848 9	5.773 8	1.147 0
7	原始信号	22.616 0	18.6961	22. 591 1	0.357 2	22. 629 4	0. 193 0
/	残差信号	1.001 2	68.732 1	1.132 8	1.482 4	0.988 2	0.649 5

表 2 3 种算法得到的内积绝对值和耗时 Table 2 Three kinds of algorithm for inner product and time-consuming

根据上述实验结果,本文提出的 LSA-MP 算法,并没 有在匹配最佳原子时因为 LSA 算法的局部搜索而降低 原子分解的精度,同时,因为 LSA 算法在寻优时的快速 迭代收敛,大大降低了匹配最佳原子的耗时;与同样利用 智能优化算法改进 MP 的 EMP 算法相比,LSA-MP 算法 在相同的原子分解精度下,具有更低的耗时。

MP 算法匹配最佳原子时需要按照一定的索引方式 依次遍历整个原子库,其时间复杂度受信号长度影响较 大,而 LSA-MP 算法在匹配最佳原子时不需要依次遍历 整个原子库,因此其时间复杂度受信号长度的影响较小, 主要是与 LSA 算法的迭代次数相关。

综上,LSA-MP 算法保留了 MP 算法的原子分解精 度,解决了 MP 算法在电能质量信号原子分解时不满足 实时性要求的问题,可以用于后续的电能质量数据压缩。

3.3 改进 LSA-MP 算法的电能质量数据压缩性能分析

将本文电能质量数据压缩方法的实验结果与小波包 压缩算法^[21]的实验结果进行比较,分析所提出的电能质 量数据压缩方法的性能。电能质量扰动信号仿真模型同 表1,每种扰动类型各100个,在电能质量信号无噪声和 30 dB 高斯白噪声两种情况下进行实验,计算压缩率 *I_{CR}*、均方误差百分数(MSE)、信噪比(SNR)和能量恢 复系数(ERP),结果如表3所示。图4所示是在30 dB 高斯白噪声的情况下利用本文提出的电能质量数据压 缩与重构方法对其中1组电能质量信号分解与重构的 波形。

根据表 3 数据可知,对于单一的扰动信号 1、2、3、4、5 和 7,在电能质量仿真模型无噪声的情况下,本文方法得 到的压缩率 *I_{cr}*、均方误差百分数 MSE 和信噪比 SNR 明 显优于小波包压缩算法得到的 *I_{cr}*、MSE 和 SNR,而两种 方法的得到的能量恢复系数 ERP 没有显著性区别;在电 能质量仿真模型中添加 30 dB 高斯白噪声的情况下,两 种方法得到的 MSE、ERP 和 SNR 没有显著性区别,而 *I_{cr}* 的差距变得更大。对于含有多重扰动的信号 6、8、9 和 10,在无噪声和添加 30 dB 高斯白噪声两种情况下,本文 方法得到的 MSE、ERP 和 SNR 并不明显优于小波包压缩 算法得到的 MSE、ERP 和 SNR,在压缩率方面,小波包压 缩算法的 *I_{cr}*要更低,而本文方法得到的压缩率仍然超过 98%,两者差距进一步扩大。

根据上述实验结果,本文方法相比于小波包压缩算法,压缩率更高,失真度更低。原子分解用解析的参量表达式来表示信号,获得信号更稀疏的表示方式,其稀疏程度与信号的长度无关,只与信号中含有的扰动类型和数量相关。因此,对于处理大规模的电能质量数据,利用原子分解算法的电能质量数据压缩方法优势更为明显。

表 3 电能质量信号压缩与重构性能评价指标

	Table 3	Power quality	signal cor	npression and	reconstruct	ion perfor	mance evalua	tion index	
侍日侍日	原始信号	本文方法(均值) 小波包压缩算法(均值)							
信专序专	信噪比	I_{CR} /%	MSE/%	ERP/%	$\frac{1}{SNR/dB}$	$I_{CR}/\%$	MSE/%	ERP/%	SNR/dB
1	无噪声	99.41	0. 193 8	100.025 1	54.254 1	85.52	0.911 9	100.010 9	40.8007
1	30 dB	99.41	3.1921	99.8832	29.918 3	79.05	3.337 2	99.8206	29.535 2
2	无噪声	99.41	0.087 8	100.0707	61.136 0	85.81	0.8997	99.9999	40.9177
2	30 dB	99.41	4.6201	100.022 2	26.7069	73.33	4.732 6	99.635 2	26.497 6
3	无噪声	99.41	0.277 6	100.090 2	51.1304	85.81	0.8753	99.997 5	41.157 2
5	30 dB	99.41	5.1899	99.6986	25.696 8	57.66	5.248 3	99.6426	25.9996
4	无噪声	99.41	0.4396	99.8474	47.1386	85.71	0.989 9	99.9996	40.088 3
	30 dB	99.41	4.470 5	99.658 0	26. 992 9	72.38	4. 537 0	99.610 3	26.864 6
5	乙喋戸	99.41	0.066.6	100.116.3	63.3564	86. 19	0.854 3	100.0014	41.3675
	<u></u>	99.41	4. 552 0	99.8/46	20. 835 9	/1.24	4. 623 5	99.838.0	20. 700 0
6	九喉戸 20 JP	98.53	1.049 1	99.900 8	39. 384 U 38. 045 3	57.51	2.619.0	99.934 9	51.057 5 26.725 6
		90.33	0.081.4	99.850 2	61 792 2	85 14	0.961.9	99.7741	40 337 4
7	30 dB	99.12	4 344 2	99.778.8	27 241 8	70.67	4,508,6	100 049 8	26 919 2
	无噪声	98. 53	1.006.0	100. 123 6	39.948 0	74.10	1.016 3	99, 989 1	39.859.8
8	30dB	98.53	4.3148	100.144 8	27.3007	63.52	4.3772	100.113 8	27.1761
0	无噪声	98.83	2.135 3	100.048 7	33.410 8	60.00	5.943 3	99.647 1	24.5195
9	30 dB	98.83	5.1078	99.785 0	25.8354	56.10	7.5394	99.340 5	22.453 2
10	无噪声	98.53	2.0921	100.373 9	33.588 4	74.00	1.791 0	99.968 1	34.938 2
10	30 dB	98.53	5.087 5	100.093 9	25.8699	66.86	4.9965	99.738 3	26.026 6
.u.	J	原始信号	.u.	原	始信号	.u.		原始信号	
畐値/F									$\neg M$
-	0 0.05 0.10	0.15 0.20 0.25 0.5 时间/s	0 = -1	0 0.05 0.10 0.	15 0.20 0.25 0 时间/s	0.30 0.35	0 0.05 0.1	0 0.15 0.20 0.2 时间/s	25 0.30
p.u.	提取	的基波信号	. b.u.	提取自	的基波信号	p.u.	,提	取的基波信号	
値	0	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA				₩ 通			AAAA
壁	-1 0 0.05 0.10	0.15 0.20 0.25 0.3			<u>/////////////////////////////////////</u>	₩₩ 2000,35 響	$-1 \frac{ V V V V V }{0 0.05 0.1}$	0 0.15 0.20 0.2	25 0.30
÷	+티 파고	时间/s	÷		时间/s	÷	-14	时间/s	
重/p.	0.2		 0.5	提 取日	が抗动信号	重/p.	1	收的机动 信亏	
国-			〕 厪 _0 5			■			
	0 0.05 0.10	0.15 0.20 0.25 0.3 时间/s	0 0.5	0 0.05 0.10 0.	15 0.20 0.25 0 时间/s	0.30 0.35	0 0.05 0.1	0 0.15 0.20 0.2 时间/s	25 0.30
p.u.	最终	的残差信号	p.u.	最终的	的残差信号	p.u.	。1最	终的残差信号	
重		the shield a second static lines							
些_	0.1 0 0.05 0.10	·····································	$= -0.05 \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $			■ 0.05 0 0.05 0.10 0.15 0.20 0.25 0.30			
		时间/s			时间/s			时间/s	
terral	1	〔构信号	1		构信号		$1 \wedge \wedge \wedge \wedge \wedge$		
置信		$\Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda$	∖/0	<u> tV V V V V V V V V V V V </u>	<u>/~~~/////</u>	\/.\/ 摩		<u>VVVVV</u>	
	0 0.05 0.10	0.15 0.20 0.25 0.3	0	0 0.05 0.10 0.	15 0.20 0.25 0 时间/s	0.30 0.35	10 0.05 0.1	0 0.15 0.20 0.2 时间/s	25 0.30
	(0)	时间/s 由压新升		(h)	由正新路		,	い由圧山艇	
	(a) Vo	oltage swell		(b) V	Voltage dip		(c) Vo	ltage interruption	
	E	前始信号		Г	百始信早			百州信号	
Ξ.			– –						
直/p									
層	0 0.05 0.10	0.15 0.20 0.25 0.50 时间/s	會	0 0.1	5.2 时间/s	9.5 庫	0 0.05 0.1	时间/s	0.50
	. 提取	的基波信号		, 提取	的基波信号		, 提	取的基波信号	
/p.u		MAAAAAAAA		$\Phi AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AA d	_¢ <u>\</u> \/	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAA
層	0 0.05 0.10	0.15 0.20 0.25 0.30) 垣	0 0.1	0.2	0.3 埋	0 0.05 0.1	0 0.15 0.20 0.2 时间/a	5 0.30
	提取) 	的间/S 的批动信号		坦耶	的护力信号	-	坦	时间/S 取的拚动信号	
0.U.	0.2			$\frac{1}{0}$	$\sim \Lambda \sim \Lambda \sim \Lambda$		0.5		
值/p	0 0.05 0.10 0	0.15 0.20 0.25 0.30	」 塡 -0.	$1 \begin{array}{c c} 0 \\ 0 \\ 0 \end{array} 0.1$	0.2	0.3 4	-0.5 0 0.05 0.1	0 0.15 0.20 0.2	5 0.30
哩		时间/s	匰		时间/s	中		时间/s	
-	0.1 最终I	的残差信号		1 最终	的残差信号		最	终的残差信号	
n.q/	0.1		m:0.0	g winter the second second second	halan an a	Mind/		nation and the state of the state of the	
幅值	0 0.05 0.1 0	0.15 0.2 0.25 0.30 时间/s		0 0.1	0.2 时间/s	0.3 更 更	0 0.05 0.1	U 0.15 0.20 0.2 时间/s	5 0.30
	重	〔构信号	- i	Ĩ	重构信号	i I		重构信号	
重/p.			重/b.	$\delta \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda$		AA 着	1 AAAAA	<u>AAÂÂA</u> A	
園	0 0.05 0.10	0.15 0.20 0.25 0.30)	0 0.1	0.2	0.3 厚	$-1 \frac{1}{0} \frac$	0 0.15 0.20 0.2	5 0.30
	(1)	町川/S 時/山井→		/_\ ++ 1	时间/s 玉波动和问本			时间/s の 音ば毛夢	
	(u)	MUNT T 1/6490		(6) 电)	五政的邗内又			小农城水初	

(e) Voltage fluctuation and flicker

(f) Dying oscillation

(d) Pulse disturbance

Fig. 4 Waveforms of power quality signal decomposition and reconstruction

4 结 论

本文对应用原子分解的电能质量数据压缩方法进行 了分析,针对原子分解中匹配最佳原子时计算复杂度高、 耗时长,不能满足电能质量数据压缩实时性要求的问题, 提出利用闪电搜索算法挑选最佳匹配原子,简化原子匹 配过程,提高原子匹配效率,加快电能质量压缩进程。实验结果表明,本文提出的 LSA-MP 算法保留了 MP 算法 匹配最佳原子时的精度,通过局部搜索和全局搜索相结 合的方式降低了匹配最佳原子时的复杂度,减少了计算 量,显著减少了匹配最佳原子的时间,满足电力信号分析 的实时性要求。利用所提出的 LSA-MP 算法对电能质量 数据进行压缩,实验结果表明,LSA-MP 算法可以准确定 量地提取到电能质量信号的特征参数,压缩后的电能质 量数据失真度低压缩率高。LSA-MP 算法提高了原子分 解的实用性,因此下一步的工作可以考虑拓展 LSA-MP 算法的应用范围,例如电能质量扰动分类识别^[22],电能 质量信号降噪^[23],配电网内部过电压识别^[24]、电气化铁 路谐波检测^[17]等。

参考文献

- [1] ZOBBA A F, ALEEM S H E A. Power quality in future electrical power systems [C]. Power Quality in Future Electrical Power Systems, 2017.
- PERERA S, DAN S. Guest editorial special section on contemporary issues in power quality [J]. IEEE Transactions on Power Delivery, 2017, 32(2):811-811.
- [3] 王鹤,李石强,于华楠,等.基于分布式压缩感知和边缘计算的配电网电能质量数据压缩存储方法[J].电工技术学报,2020,35(21):4553-4564.

WANG H, LI S Q, YU H N, et al. Power quality data compression storage method for distribution network based on distributed compressed sensing and edge computing [J]. Transactions of China Electrotechnical Society, 2020, 35(21):4553-4564.

 [4] 于华楠,杜瑶,马聪聪.电力系统信号与数据的压缩传感技术综述[J].仪器仪表学报,2017,38(8): 1943-1953.

> YU H N, DU Y, MA C C. Summary of compression sensing technology for power system signal and data [J]. Chinese Journal of Scientific Instrument, 2017, 38(8): 1943-1953.

 [5] 王展,杜思远,贺文治,等.基于全相位快速傅里叶变换的主轴不平衡特征提取及实验[J].仪器仪表学报, 2020,41(4):138-146.

> WANG ZH, DU S Y, HE W ZH, et al. Spindle unbalance feature extraction and experiment based on allphase fast Fourier transform [J]. Chinese Journal of Scientific Instrument, 2020, 41(4):138-146.

 [6] 黄建明,瞿合祚,李晓明.基于短时傅里叶变换及其谱 峭度的电能质量混合扰动分类[J].电网技术,2016, 40(10):3184-3191.

HUANG J M, QU H Z, LI X M. Hybrid perturbation classification of power quality based on short-time Fourier transform and spectral kurtosis [J]. Power System Technology, 2016,40(10):3184-3191.

 [7] 曹辉,杨理践,刘俊甫,等.基于数据融合的小波变换 漏磁异常边缘检测[J].仪器仪表学报,2019,40(12): 71-79.

CAO H, YANG L J, LIU J F, et al. Edge detection of magnetic flux leakage anomaly based on wavelet transform

data fusion[J]. Chinese Journal of Scientific Instrument, 2019,40(12):71-79.

- [8] 徐耀松,唐维,徐才宝,等.基于S变换和PSO-GRNN的柔性直流输电线路故障测距方法[J].电子测量与 仪器学报,2020,34(6):9-17.
 XUYS, TANGW, XUCB, et al. Fault location method for flexible HVDC transmission lines based on S transform and PSO-GRNN [J]. Journal of Electronic Measurement and Instrumentation,2020,34(6):9-17.
- [9] ELANGO M K, KUMAR A N, DURAISWAMY K. Identification of power quality disturbances using artificial neural networks [C]. 2011 International Conference on Power and Energy Systems, 2011:1-6.
- [10] 吴纯,王文波.基于 Synchrosqueezing 小波变换的谐波 和间谐波检测方法[J].电子测量与仪器学报,2017, 31(4):630-635.
 WU CH, WANG W B. Harmonic and inter-harmonic detection method based on Synchrosqueezing wavelet transform [J]. Chinese Journal of Scientific Instrumentation, 2017,31(4):630-635.
- [11] 张磊. 基于快速原子分解的电能质量扰动分析方法研究[D]. 长沙:湖南大学,2015.
 ZHANG L. Study on power quality perturbation analysis method based on fast atomic decomposition [D]. Changsha:Hunan University,2015.
- [12] 张磊,黄纯,江亚群,等.应用 HS 改进原子分解的电能 质量扰动辨识分析 [J]. 电网技术, 2015, 39 (1): 194-201.

ZHANG L, HUANG C, JIANG Y Q, et al. Power quality perturbation identification analysis using HS to improve atomic decomposition [J]. Power System Technology, 2015, 39(1):194-201.

- [13] 龚嫄. 基于原子稀疏分解的电能质量扰动检测与压缩 性能研究[D].重庆:重庆大学,2016.
 GONG Y. Power quality perturbation detection and compression performance based on atomic sparse decomposition [D]. Chongqing: Chongqing University,2016.
- [14] 周金,高云鹏,吴聪,等. 基于改进小波阈值函数和 CEEMD 电能质量扰动检测[J]. 电子测量与仪器学 报,2019,33(1):141-148.
 ZHOU J, GAO Y P, WU C, et al. Based on improved wavelet threshold function and CEEMD power quality disturbance detection[J]. Chinese Journal of Scientific Instrumentation, 2019,33(1):141-148.
- [15] 曲正伟,郝婉茹,王宁.原子分解快速算法在电能质量 扰动分析中的应用[J].电力自动化设备,2015, 35(10):145-150.

QU ZH W, HAO W R, WANG N. Application of fast atomic decomposition algorithm in power quality disturbance analysis [J]. Electric Power Automation Equipment, 2015,35(10):145-150.

[16] 房小娟. 基于种群优化的稀疏分解算法研究[D]. 北京:北京工业大学,2013.

FANG X J. Research on sparse decomposition algorithm based on population optimization [D]. Beijing University of Technology, 2013.

[17] 何国军,朱云芳,戴朝华,等.基于差分进化的时频原 子分解方法在电气化铁路谐波检测中的应用[J].电 网技术,2012,36(12):211-216.

HE G J, ZHU Y F, DAI CH H, et al. Application of time-frequency atomic decomposition method based on differential evolution in harmonic detection of electrified railway [J]. Power System Technology, 2012, 36(12): 211-216.

- [18] SHAREEF H, IBRAHIM A A, MUTLAG A H. Lightning search algorithm [J]. Applied Soft Computing, 2015, 36(S1):315-333.
- [19] 王宁,李林川,贾清泉,等.应用原子分解的电能质量 扰动信号分类方法[J].中国电机工程学报,2011, 31(4):51-58.
 WANG N, LI L C, JIA Q Q, DONG H Y. Power quality perturbation signal classification method using atomic decomposition [J]. Proceedings of the CSEE, 2011,
- 31(4):51-58.
 [20] 杨烁,曹思扬,戴朝华,等.电能质量扰动信号时频原子分解的进化匹配追踪算法[J].电力系统保护与控制,2015,43(16):79-86.

YANG SH, CAO S Y, DAI CH H, et al. Evolutionary matching tracking algorithm for time-frequency atomic decomposition of power quality disturbance signals [J]. Power System Protection and Control, 2015, 43 (16): 79-86.

- [21] ABDEL-SAYED M M, KHATTAB A, ABU-ELYAZEED M F. Wideband compressed sensing using wavelet packet adaptive reduced-set matching pursuit [C]. 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), 2018: 219-224.
- [22] 于浩明,黄纯,江亚群,等.采用快速原子分解的电能 质量扰动信号参数辨识[J].电网技术,2014,38(8): 2237-2243.

YU H M, HUANG C, JIANG Y Q, et al. Parameter identification of power quality disturbance signals based on fast atomic decomposition [J]. Power System Technology, 2014, 38(8):2237-2243.

- [23] 王文飞,周雒维,李绍令,等.采用改进 CPSO 动态搜索时频原子的电能质量扰动信号去噪方法[J].电网技术,2018,42(12):4129-4137.
 WANG W F, ZHOU K W, LI S L, et al. The denoising method of power quality disturbance signal based on improved CPSO dynamic searching time frequency atom is adopted [J]. Power System Technology, 2018,42(12): 4129-4137.
- [24] 廖宇飞,杨耿杰,高伟,等. 基于 AD-CNN 算法的配电 网内部过电压识别技术 [J]. 高电压技术, 2019, 45(10):3182-3191.

LIAO Y F, YANG G J, GAO W, et al. Internal overvoltage identification technology of distribution network based on AD-CNN algorithm [J]. High Voltage Engineering, 2019,45(10):3182-3191.

作者简介

袁莉芬(通信作者),分别在 1999 年于 中南大学获得学士学位,2003 年和 2011 年 于湖南大学获得硕士学位和博士学位,现为 合肥工业大学教授,主要研究方向为测试与 故障诊断、智能电网技术、射频识别技术。 E-mail: yuanlifen_hfut@ 163.com

Yuan Lifen (Corresponding author) received her B. Sc. degree from Central South University in 1999, M. Sc. and Ph. D. degrees both from Hunan University in 2003 and 2011, respectively. Now she is a professor in Hefei University of Technology. Her main research interests include circuit testing and fault diagnosis, smart grid technology and radio frequency identification technology.

technology.

刘韬,在 2019 年于安徽大学获得学士 学位,现为合肥工业大学电气与自动化工程 学院硕士研究生,主要研究方向为智能电网 技术和信号处理技术。

E-mail: 1690027558@ qq. com

Liu Tao received his B. Sc. degree from Anhui University in 2019. Now he is a M. Sc. candidate in Hefei University of Technology. His main research interests include Smart Grid Technology and signal processing