· 30 ·

DOI: 10. 13382/j. jemi. B1902845

基于标签 Petri 网的自动制造系统初始资源配置优化*

郝晋渊¹ 孙丹丹² 郝真鸣² 陈 凡² 冉 宁²

(1.河北大学中央兰开夏传媒与创意学院 保定 071002;2.河北大学 电子信息工程学院 保定 071002)

摘 要:自动制造系统初始资源配置优化问题是指在使用最少初始资源成本的前提下,完成预设生产任务。针对该问题,提出了一种基于标签 Petri 网和整数线性规划的计算方法。首先,根据标签 Petri 网的结构化特性给出拟执行任务与初始资源的约束关系,将初始资源配置优化问题抽象为整数线性规划问题;其次,利用 Lingo 等软件求解该整数线性规划问题;最后,通过实例对提出方法进行验证。实验结果表明,提出的方法简单高效,对实际自动制造系统的初始资源配置具有一定借鉴意义。
 关键词:自动制造系统;资源配置;标签 Petri 网;整数线性规划
 中图分类号: TP11;TN0 文献标识码:A 国家标准学科分类代码: 510.80

Initial resource allocation optimization of automated manufacturing systems using labeled Petri nets

Hao Jinyuan¹ Sun Dandan² Hao Zhenming² Chen Fan² Ran Ning²

(1. HBU-UCLan School of Media, Communication and Creative Industries, Hebei University, Baoding 071002, China;2. College of Electronic Information Engineering, Hebei University, Baoding 071002, China)

Abstract: The initial resource allocation optimization problem of automatic manufacturing system is to complete the preset production task under the premise of the minimum use of initial resource. To solve this problem, a method based on labeled Petri nets and integer linear programming is proposed. First, according to the structural characteristics of labeled Petri nets, the constraint relationship between the proposed task and the initial resource is given, and the initial resource allocation optimization problem is abstracted into an integer linear programming problem. Secondly, the software Lingo is used to solve the integer linear programming problem. Finally, an example is given to verify the proposed method. The experimental results show that the proposed method is simple and efficient, which can be used for reference in the initial resource allocation of the actual automatic manufacturing system.

Keywords: automated manufacturing system; resource allocation; labeled Petri nets; integer linear programming

0 引 言

自动制造系统(automated manufacturing system, AMS)能够在较少的人工干预下,将原材料加工成零件或

将零件组装成产品,并在加工过程中实现管理过程和工 艺流程的自动化^[1]。绝大多数 AMS 具有强离散性、事件 驱动等特征,同时也具有异步、并发和不确定性等特点, 因此可抽象为离散事件系统进行研究^[2]。在实际生产应 用中,AMS 初始资源配置优化问题就是在满足预先设定

收稿日期:2019-12-22 Received Date: 2019-12-22

^{*}基金项目:国家自然科学基金(61903119)、河北省自然科学基金(F2019201088)、河北省引进留学人员项目(C20190319)、河北大学"一省一校"专项基金(801260201137)、保定市文化艺术科学规划项目一般项目(BWGY044)、河北省文化艺术科学规划项目青年项目(HB17-QN025)、河北省人力资源和社会保障课题(JRS-2020-3025)、河北大学第二批"课程思政改革试点课程"建设项目(2020-KCSZ-02-119、2020-KCSZ-02-074)、河北大学工商学院第二批应用型课程建设项目(2019KCJS07)资助

的生产任务的前提下分配最少的资源,从而达到节约生 产成本、提高经济效益的目的。目前用于研究该问题的 数学工具主要有自动机、Petri 网、排队论等,其中自动 机、Petri 网以描述事件之间的逻辑关系为主而较为 常用。

由于 Petri 网具有数学和图形双重表示的特性^[3],而 且建模能力强、效率高,因此被广泛应用于 AMS 的故障 诊断^[49]、监控器综合^[10-14]、资源配置优化等研究。万颖 等^[15]为了实现更优系统资源配置,以物流园区拆装箱进 出库作业过程为研究对象,利用 Petri 网和排队论对作业 流程进行分析并提出解析模型,实现了系统资源的优化 配置。钱伟伟等^[16]提出了一种基于制造资源使用阈值 的资源分配方法,并建立了基于时间有色 Petri 网的协同 制造任务与资源分配模型,提高了制造资源的使用效率 和分配能力。许晨晨等^[17]基于赋时 Petri 网对高高原机 场应急资源配置进行了优化研究,提升高高原机场应急 救援效率,实现应急救援作业周期优化。蒋陵平等^[18]针 对通航维修资源的调度问题,基于 Petri 网理论建立了基 于着色和时间的高级 Petri 网维修资源调度模型,提高了 维修资源利用率。

然而,目前几乎所有基于 Petri 网的资源配置方法都 需要计算系统的状态空间,并未充分利用模型的结构特 性,因此复杂度较高,在一定程度上影响了实用性。本文 以标签 Petri 网为建模工具,在分析标签 Petri 网结构和 变迁发生规则的基础上将初始资源配置优化问题转化为 整数线性规划(integer linear programming, ILP)问题^[19], 避免了状态空间的计算。实验结果表明,提出的算法简 单高效、具有较强的实用性。

1 Petri 网基本概念

Petri 网的结构^[20] 是一个四元组 N = (P, T, F, W), 其中 $P = \{p_1, p_2, \dots, p_n\}$ 是库所集合; $T = \{t_1, t_2, \dots, t_m\}$ 是变迁集合; $F \subseteq (P \times T) \cup (T \times P)$ 表示库所与变迁之 间的流关系,是一个有向弧集合; $W: F \rightarrow \{1, 2, 3, \dots\}$ 是 权值函数,给每一条弧分配一个权值。

关联矩阵 **B** 是以 | P | × | T | 为序标的整数矩阵,定 义为:

$$\boldsymbol{B} = \boldsymbol{Post} - \boldsymbol{Pre} \tag{1}$$

式中: **Pre** 为前置关联矩阵,其中 **Pre**(*p*,*t*) = *W*(*p*,*t*); **Post** 为后置关联矩阵,其中 **Post**(*p*,*t*) = *W*(*t*,*p*)。**Pre**(·, *t*) 表示前置关联矩阵中变迁 *t* 对应的列向量; **Post**(*t*, ·) 表示后置关联矩阵中变迁 *t* 对应的列向量。

在 Petri $\boxtimes N \pitchfork, t$ 表示满足 **Post**(t, \cdot) $\neq 0$ 的所有 库所集合, 即 t 的输出库所集合。t 表示满足 **Pre**(\cdot, t) \neq 0 的所有库所集合, 即 t 的输入库所集合。

Petri 网的标识是一个函数 $M: P \rightarrow A$, 其中 A 是自然 数集合。M 给每一个库所分配一个非负的托肯数, M(p)表示库所 p 中的托肯数。 (N, M_0) 是一个 Petri 网系统, N是 Petri 网结构, M_0 是初始标识。

变迁 $t \in T$ 在标识 **M** 下使能(enabled)当且仅当:

$$M \ge Pre(\cdot, t) \tag{2}$$

记为 $M[t\rangle$ 。变迁t的发生向量定义为t。变迁t发生后产生一个新的标识:

$$\boldsymbol{M}' = \boldsymbol{M} + \boldsymbol{B} \cdot \boldsymbol{t} \tag{3}$$

记为*M*[*t*>*M*'。

给出一个变迁序列 $\sigma = t_1 t_2, \dots, t_k, M[\sigma)$ 表示 σ 在标识 *M* 下是使能的。在初始标识 *M*₀ 下使能的所有变迁 序列定义为 $D(N, M_0)$,即:

 $D(N, \boldsymbol{M}_0) = \{ \boldsymbol{\sigma} \in \boldsymbol{T}^* \mid \boldsymbol{M}_0[\boldsymbol{\sigma} \rangle \}$ (4)

标识 M' 是从 M_1 可达的,当且仅当存在一个变迁发 生 序 列 $\sigma = t_1 t_2, \dots, t_k$ 和 标 识 M_1, M_2, \dots, M_k , 使 $M_1[t_1 \rangle M_2[t_2 \rangle, \dots, M_k[t_k \rangle M'$ 成立。从标识 M 出发能够 到达的全部标识的集合称为 (N, M) 的可达标识集,表 示为 R(N, M)。

标签 Petri 网是一个四元组 $N_L = (N, M_0, \Sigma, L)$, 其中 N = (P, T, F, W) 是一个 Petri 网结构; M_0 是该 Petri 网的 初始标识; Σ 是标签集合; $L: T \rightarrow \Sigma$ 是标签函数, 为每一 个变迁赋予一个标签。

由于只考虑可观变迁存在的情况,因此不会赋予变 迁空标签。对于标签 $l \in \Sigma$,与该标签相关的变迁集合表 示为 T_l ,即:

$$\Gamma_{l} = \{ t_{i} | L(t_{i}) = l \}$$
(5)

并用 $|T_l|$ 表示该变迁集合的基数。给出一个变迁 序列 $\sigma = t_{i1}t_{i2}, \dots, t_{ik}$, 与其相对应的标签序列为 $\omega = L(\sigma) = L(t_{i1})L(t_{i2}), \dots, L(t_{ik})$ 。 当给出一个标签序列 ω ,存在一个或多个变迁发生序列 σ 与其一致,将所有与 ω 一致的变迁序列集合定义为 $S(\omega)$, 即:

 $S(\boldsymbol{\omega}) = \{ \boldsymbol{\sigma} \in D(N, \boldsymbol{M}_0) \mid L(\boldsymbol{\sigma}) = \boldsymbol{\omega} \}$ (6)

对于图 1 所示标签 Petri 网模型,其库所集合 $P = \{p_1, p_2, p_3, p_4, p_5\}$,变迁集合 $T = \{t_1, t_2, t_3, t_4\}$,关联矩阵 **B** 为:

$$\boldsymbol{B} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

标签函数 $L(t_1) = L(t_3) = a, L(t_2) = b, L(t_4) = c_0$ 当 变迁序列为 $\sigma = t_1 t_2 t_3$ 时, 对应的标签序列为 $\omega = aba$;当 标签序列为 $\omega = abc$,与 ω 一致的变迁序列集合为 $S(\omega) = \{t_1 t_2 t_4, t_3 t_2 t_4\}$ 。

2 初始资源配置优化问题描述

本文研究 AMS 的初始资源配置优化问题,即在分配 最少初始资源的前提下完成一项预设生产任务。在标签 Petri 网模型下,对 AMS 的初始资源配置优化可描述为在 一定约束条件下求解最小初始标识。

给定一个初始标识未知的标签 Petri 网模型和一个 长度为 k 的观测序列 $\omega = l_1 l_2, \dots, l_k$,其中 $l_j \in \Sigma, j \in \{1, 2, \dots, k\}$,该观测序列是由一个未知的变迁发生序列 $\sigma = \lambda_1 \lambda_2, \dots, \lambda_k$ 生成的,其中 $\lambda_i \in T, i = 1, 2, \dots, k$,即 $l_j = L(\lambda_i)$ 。由于符合 ω 的变迁发生序列可能有多个,因此可能计算出多个对应的初始标识。在此条件下求解初始标识 M_0 ,且满足以下条件。

1) 至少存在一个变迁序列 σ 使能且与 ω 一致, 即 $M_0[\sigma] \perp L(\sigma) = \omega$ 。

2) 初始资源(托肯)数最小,即 $\sum_{i=1}^{n} \boldsymbol{M}_{0}(p_{i})$ 最小。

符合以上两个条件的初始标识即为最小初始标识, 即为初始资源配置优化结果。

令图 1 所示标签 Petri 网模型完成预定事件序列 ω = $aabc_o$ 根据标签 Petri 网模型可计算出与 ω 一致的变迁 序列集合为 $S(\omega)$ = { $t_1t_1t_2t_4$, $t_1t_3t_2t_4$ },对其进行初始资 源配置优化,即计算满足下列条件的初始标识 M_{0o}

1) 使 S(w) 中的各变迁序列使能。

2) 初始资源 $\sum_{i=1}^{3} M_0(p_i)$ 最小。

3 初始资源配置优化算法

基于标签 Petri 网的 AMS 初始资源配置优化如算法 1 所示。

给定一个初始标识未知的标签 Petri 网 N_{L} 和观测 序列 $\omega = l_{1}l_{2}, \dots, l_{k}$, 求解最小初始标识作为初始资源 配置优化的解。与观测序列 ω 一致的变迁序列可能有 一个或多个,因此计算出与其一致的变迁序列集合 $S(\omega)$,并对其中的每一个变迁序列求解最小初始 标识。

算法1初始资源配置优化

输入:初始标识未知的标签 Petri 网 N_L 、观测序列 $\omega = l_1 l_2, \dots, l_k$ 输出:初始资源配置优化结果

1) 计算与ω一致的变迁序列集合 S(ω)

2) 对于 $S(\omega)$ 中的每个变迁序列 $\sigma = \lambda_1 \lambda_2, \dots, \lambda_k$ 执行如下 步骤

(1)令 $M_0 = (x_1, x_2, \dots, x_{|p|})^T, x_i$ 为库所 p_i 中的初始托肯

数。将所求最小初始标识转化为如下目标函数: min \sum_{x_i}

(2)写出约束条件: M₀ ≥ 0
 (3)写出约束条件集合:
 ①令 h=1,

②如果
$$h \leq k$$
, 则 $M_0 + B \cdot \left(\sum_{i=1}^{h-1} \overline{\lambda_i}\right) \geq Pre(\cdot, \lambda_h), h =$

h+1,返回步骤②;否则,执行步骤(4)

(4)求解在上述约束条件下的目标函数

3) 重复步骤 2), 直到得到所有使 S(ω) 中的变迁序列使能的 最小初始标识

4) 在获得的所有最小初始标识中选取托肯数总和最小的最小 初始标识,并输出为计算结果

对 $S(\omega)$ 中的每一个变迁序列 $\sigma = \lambda_1 \lambda_2, \dots, \lambda_k$ 求解 最小初始标识,将其转化为求解一个 ILP 问题。首先,将 所求最小初始标识转化为目标函数 min $\sum_{i=1}^{|P|} x_i$;其次,写 出由标签 Petri 网模型的固有属性所决定的约束条件 $M_0 \ge \vec{0}$;最后,为保证变迁序列 σ 发生,根据变迁发生规 则(2)和(3)得到约束条件集合 $M_0 + B \cdot \left(\sum_{i=1}^{h-1} \vec{\lambda_i}\right) \ge$ **Pre**(\cdot, λ_h)。在这些约束条件下目标函数的解即为能够 保证 σ 发生的最小初始标识。

通过求解多个 ILP 问题,得到一个最小初始标识集 合,选择托肯数总和最小的最小初始标识作为初始资源 配置优化的最终解。

虽然 ILP 是 NP-Hard 问题,但大量实验结果表明现 有的 Gurobi、Lingo 等软件在求解这类问题上具有良好的 计算效率,本文利用 Lingo 求解 ILP 问题。

利用算法 1 求解图 1 所示标签 Petri 网的初始资源 配置优化问题,观测序列为 $\omega = aabc_o$ 令初始标识 $M_0 = (x_1, x_2, x_3, x_4, x_5)^{T}$,其中 x_i 表示库所 p_i 中的托肯数,目标 函数为 min $\sum_{i=1}^{5} x_i o$ 根据变迁序列集合 $S(\omega) = \{t_1 t_1 t_2 t_4, t_1 t_3 t_2 t_4\}$ 考虑以下两种情况:

1) 若变迁序列 $\sigma = t_1 t_1 t_2 t_4$ 发生, 根据算法 1 得到以 下约束条件:

(1)任意库所 $p \in P$ 满足 $M_0(p) \ge 0$;

(2)
$$\begin{cases} M_{0} \geq Pre(\cdot,t_{1}) \\ M_{0} + B \cdot \overrightarrow{t_{1}} \geq Pre(\cdot,t_{1}) \\ M_{0} + B \cdot \overrightarrow{t_{1}} + B \cdot \overrightarrow{t_{1}} \geq Pre(\cdot,t_{2}) \\ M_{0} + B \cdot \overrightarrow{t_{1}} + B \cdot \overrightarrow{t_{1}} + B \cdot \overrightarrow{t_{2}} \geq Pre(\cdot,t_{4}) \end{cases}$$

因此,在 $\sigma = t_1 t_1 t_2 t_4$ 的情况下,初始资源配置优化问题可转化为如下 ILP 问题:

$$\min \sum_{i=1}^{5} x_{i} \tag{7}$$

$$\left[\boldsymbol{M}_{0} \ge \vec{0} \right]$$

s. t.
$$\begin{cases} \boldsymbol{M}_{0} \geq \boldsymbol{Pre}(\cdot,t_{1}) \\ \boldsymbol{M}_{0} + \boldsymbol{B} \cdot \vec{t_{1}} \geq \boldsymbol{Pre}(\cdot,t_{1}) \\ \boldsymbol{M}_{0} + \boldsymbol{B} \cdot \vec{t_{1}} + \boldsymbol{B} \cdot \vec{t_{1}} \geq \boldsymbol{Pre}(\cdot,t_{2}) \\ \boldsymbol{M}_{0} + \boldsymbol{B} \cdot \vec{t_{1}} + \boldsymbol{B} \cdot \vec{t_{1}} + \boldsymbol{B} \cdot \vec{t_{2}} \geq \boldsymbol{Pre}(\cdot,t_{4}) \end{cases}$$
(8)

利用 Lingo 对该 ILP 问题求解,计算结果为 min $\sum_{i=1}^{5} x_i = 3$,此时 $M_0 = (2,0,0,1,0)^{\mathrm{T}}$ 。

2) 若变迁序列 $\sigma = t_1 t_3 t_2 t_4$ 发生, 初始资源配置优化 问题可转化为如下 ILP 问题:

$$\min \sum_{i=1}^{3} x_{i}$$
(9)
s. t.
$$\begin{cases} M_{0} \ge \vec{0} \\ M_{0} \ge Pre(\cdot, t_{1}) \\ M_{0} + B \cdot \vec{t_{1}} \ge Pre(\cdot, t_{3}) \\ M_{0} + B \cdot \vec{t_{1}} + B \cdot \vec{t_{3}} \ge Pre(\cdot, t_{2}) \\ M_{0} + B \cdot \vec{t_{1}} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{2}} \ge Pre(\cdot, t_{4}) \\ \end{cases}$$
(10)

利用 Lingo 对该 ILP 问题求解,计算结果为 min $\sum_{i=1}^{5} x_i = 2$, 此时 $M_0 = (1,0,1,0,0)^{T}$ 。

通过比较两个计算结果可知,第 2 种情况的初始资源 总 数 更 少,因 此 初 始 资 源 配 置 优 化 结 果 为 min $\sum_{i=1}^{5} M_0(p_i) = 2$,此时变迁发生序列为 $\sigma = t_1 t_3 t_2 t_4$,初 始标识为 $M_0 = (1,0,1,0,0)^{\mathrm{T}}$ 。

4 自动制造系统实例分析

4.1 实例分析

引用文献[21]中的活塞杆组装单元 Petri 网模型,如 图 2 所示。其库所集为 $P = \{p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, c_1, c_2, c_3\}$,变迁集为 $T = \{t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8, t_9\}$,关联 矩阵 **B** 为:

$B = \begin{bmatrix} 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \end{bmatrix}$ $FSE MAY L(t_1) = a, L(t_2) = b, L(t_3) = c, L(t_4) = d,$ $L(t_5) = g, L(t_6) = e, L(t_7) = L(t_8) = f, L(t_9) = h_{\circ}$ $L(t_5) = g, L(t_6) = e, L(t_7) = L(t_8) = f, L(t_9) = h_{\circ}$ $I_1(a) \longrightarrow I_1(a) \longrightarrow I_2(b) = I_1(b) = I_1(b$		1	- 1	0	0	0	0	0	0	0		
$B = \begin{bmatrix} 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \end{bmatrix}$ $F \& B \& L(t_1) = a, L(t_2) = b, L(t_3) = c, L(t_4) = d,$ $L(t_5) = g, L(t_6) = e, L(t_7) = L(t_8) = f, L(t_9) = h_{\circ}$ $I_1^{(a)} \longrightarrow I_{1}^{(a)} \longrightarrow I_{2}^{(a)} \longrightarrow $		0	1	- 1	0	0	0	0	0	0		
$B = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \end{bmatrix}$ $FSE MAY L(t_1) = a, L(t_2) = b, L(t_3) = c, L(t_4) = d,$ $L(t_5) = g, L(t_6) = e, L(t_7) = L(t_8) = f, L(t_9) = h_{\circ}$ $t_1^{(a)} \xrightarrow{p_1} \underbrace{t_4(d)}_{p_2} \xrightarrow{p_4} \underbrace{p_6}_{p_6} \underbrace{t_7(f)}_{p_7} \underbrace{p_7}_{t_8(f)} \underbrace{p_8}_{p_8}$ $B 2 #atambra back a back$		0	0	1	- 1	0	0	0	0	0		
$B = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \end{bmatrix}$ $FSE M M L(t_1) = a, L(t_2) = b, L(t_3) = c, L(t_4) = d,$ $L(t_5) = g, L(t_6) = e, L(t_7) = L(t_8) = f, L(t_9) = h_{\circ}$ $t_1^{(a)} \longrightarrow t_2^{(b)} \longrightarrow t_3^{(c)} = t_4^{(d)} \xrightarrow{p_4} \xrightarrow{p_5} \xrightarrow{t_5(g)} \xrightarrow{c_5} \xrightarrow{t_5(g)} \xrightarrow{c_5} \xrightarrow{t_5(g)} \xrightarrow{t_5(g)} \xrightarrow{c_5} \xrightarrow{t_5(g)} \xrightarrow{t_5(g)} \xrightarrow{p_2} \xrightarrow{t_5(c)} \xrightarrow{p_3} \xrightarrow{t_4(d)} \xrightarrow{p_4} \xrightarrow{p_6} \xrightarrow{t_5(f)} \xrightarrow{p_7} \xrightarrow{t_8(f)} \xrightarrow{p_8} \\ B 2 \text{#atimatical matrix}$ $B 2 \text{#atimatical matrix}$ $B \chi R R P = timet R R R R R R R R R R R R R R R R R R R$		0	0	0	1	0	- 1	0	0	0		
$B = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \end{bmatrix}$ $F(x) = g, L(t_{6}) = e, L(t_{7}) = L(t_{8}) = f, L(t_{9}) = h_{\circ}$ $L(t_{5}) = g, L(t_{6}) = e, L(t_{7}) = L(t_{8}) = f, L(t_{9}) = h_{\circ}$ $L(t_{5}) = g, L(t_{6}) = e, L(t_{7}) = L(t_{8}) = f, L(t_{9}) = h_{\circ}$ $L(t_{5}) = g, L(t_{6}) = e, L(t_{7}) = L(t_{8}) = f, L(t_{9}) = h_{\circ}$ $R_{2} = \frac{t_{5}(c)}{p_{3}} \frac{t_{4}(d)}{p_{4}} = \frac{p_{6}}{p_{6}} \frac{t_{5}(g)}{t_{7}(f)} = \frac{c_{5}}{p_{7}} \frac{t_{5}(f)}{t_{8}(f)} = \frac{c_{5}}{p_{8}}$ $R_{2} = \frac{\pi}{4} \pi d \dot{m} \dot{m} \dot{m} \dot{m} \dot{m} \dot{m} \dot{m} \dot{m}$		0	0	0	0	1	- 1	0	0	0		
$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \end{bmatrix}$ 标签函数 $L(t_1) = a, L(t_2) = b, L(t_3) = c, L(t_4) = d$, $L(t_5) = g, L(t_6) = e, L(t_7) = L(t_8) = f, L(t_9) = h_{\circ}$ $t_1(a)$ p_1 $t_2(b)$ p_2 $t_3(c)$ p_3 $t_4(d)$ p_4 p_6 $t_7(f)$ p_7 $t_8(f)$ p_8 图 2 带有初始控制器的活塞杆机 器人装配单元标签 Petri 网模型	B =	0	0	0	0	0	1	- 1	0	0		
$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \end{bmatrix}$ $ \overline{\text{K} \& \text{ M} \& L(t_1) = a, L(t_2) = b, L(t_3) = c, L(t_4) = d, \\ L(t_5) = g, L(t_6) = e, L(t_7) = L(t_8) = f, L(t_9) = h_{\circ}$ $ \stackrel{t_1(a)}{\xrightarrow{p_1 \ l_2(b)}} \stackrel{c_1}{\xrightarrow{p_3 \ l_4(d)}} \stackrel{p_4}{\xrightarrow{p_6 \ l_5(f)}} \stackrel{c_5}{\xrightarrow{p_5 \ l_5(f)}} \stackrel{c_5}{\xrightarrow{p_5 \ l_5(f)}} \stackrel{c_6}{\xrightarrow{p_5 \ l_5(f)}} \stackrel{c_7}{\xrightarrow{p_5 \ l_5(f)}} \stackrel{c_9}{\xrightarrow{p_8 \ l_8(f)}} c_$		0	0	0	0	0	0	1	- 1	0		
$\begin{bmatrix} 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \end{bmatrix}$ $ \overline{\text{K} \& \text{ M} \& L(t_1) = a, L(t_2) = b, L(t_3) = c, L(t_4) = d, }$ $ L(t_5) = g, L(t_6) = e, L(t_7) = L(t_8) = f, L(t_9) = h_{\circ}$ $ \stackrel{t_1(a)}{\xrightarrow{p_1 \ t_2(b)}} \stackrel{c_1}{\xrightarrow{p_3 \ t_4(d)}} \stackrel{p_3 \ t_5(g)}{\xrightarrow{p_4 \ p_6 \ t_7(f) \ p_7 \ t_8(f) \ p_8}} \stackrel{c_3}{\xrightarrow{p_6 \ t_7(f) \ p_7 \ t_8(f) \ p_8}} $ $ \mathbb{B} 2 #a f a j m b b b f a b b f a b b f a b b f a b b f a b b f a b b b b$		0	0	0	0	0	0	0	1	- 1		
$\begin{bmatrix} 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \end{bmatrix}$ $ \overline{\text{K} \& \text{ M} \& L(t_1) = a, L(t_2) = b, L(t_3) = c, L(t_4) = d, $ $ L(t_5) = g, L(t_6) = e, L(t_7) = L(t_8) = f, L(t_9) = h_{\circ}$ $ \overset{t_1(a)}{\underset{p_2}{}} \overset{c_1}{\underset{p_3}{}} \overset{c_1}{\underset{p_4}{}} \overset{f_4(d)}{\underset{p_4}{}} \overset{p_5}{\underset{p_6}{}} \overset{t_5(g)}{\underset{t_7(f)}{}} \overset{c_2}{\underset{p_7}{}} \overset{f_4(f)}{\underset{t_8(f)}{}} \overset{p_8}{\underset{p_8}{}} $ $ \mathbb{B} 2 \text{ # a f a ty b th b th t s = h t s }$		0	- 1	0	1	0	0	0	0	0		
$\begin{bmatrix} 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \end{bmatrix}$ 标签函数 $L(t_1) = a, L(t_2) = b, L(t_3) = c, L(t_4) = d$, $L(t_5) = g, L(t_6) = e, L(t_7) = L(t_8) = f, L(t_9) = h_{\circ}$ $t_1^{(a)}$ p_1 $t_2^{(b)}$ p_2 $t_3^{(c)}$ p_3 $t_4^{(d)}$ p_4 p_6 $t_7^{(f)}$ p_7 $t_8^{(f)}$ p_8 图 2 带有初始控制器的活塞杆机 器人装配单元标签 Petri 网模型		0	0	0	0	- 1	0	0	0	1		
标签函数 $L(t_1) = a, L(t_2) = b, L(t_3) = c, L(t_4) = d,$ $L(t_5) = g, L(t_6) = e, L(t_7) = L(t_8) = f, L(t_9) = h_0$ $t_1(a)$ p_1 $t_2(b)$ p_2 $t_3(c)$ p_3 $t_4(d)$ p_4 p_6 $t_7(f)$ p_7 $t_8(f)$ p_8 图 2 带有初始控制器的活塞杆机 器人装配单元标签 Petri 网模型		0	0	0	0	- 1	0	1	0	0		
$L(t_{5}) = g, L(t_{6}) = e, L(t_{7}) = L(t_{8}) = f, L(t_{9}) = h_{\circ}$ $t_{1}(a) \longrightarrow t_{2}(b) \longrightarrow t_{3}(c) = p_{3} - t_{4}(d) = p_{4} - p_{6} - t_{5}(f) = p_{7} - t_{8}(f) = p_{8}$ $\mathbb{E} 2 - \# f \hbar dh dh dh h h h h h h h h h h h h h h $	标签函数 $L(t_1) = a, L(t_2) = b, L(t_3) = c, L(t_4) = d$,											
$t_1(a)$ p_1 $t_2(b)$ p_2 $t_3(c)$ p_3 $t_4(d)$ p_4 p_6 $t_7(f)$ p_7 $t_8(f)$ p_8 B 2 带有初始控制器的活塞杆机 器人装配单元标签 Petri 网模型	$L(t_5)$	$L(t_5) = g, L(t_6) = e, L(t_7) = L(t_8) = f, L(t_9) = h_{\circ}$										
p_1 $t_2(b)$ p_2 $t_3(c)$ p_3 $t_4(d)$ p_4 p_6 $t_5(f)$ p_7 $t_8(f)$ p_8 图 2 带有初始控制器的活塞杆机 器人装配单元标签 Petri 网模型	$t_1(a)$	⁽⁷⁾ _	-		c1	р,	$t_{\epsilon}(g)$		c.			
$t_2(b)$ p_2 $t_3(c)$ p_3 $t_4(d)$ p_4 p_6 $t_7(f)$ p_7 $t_8(f)$ p_8 图 2 带有初始控制器的活塞杆机 器人装配单元标签 Petri 网模型	L	$p_1 \bigvee$)		Õ	Õ	<_ <	(Ĵ -			
p2 t3(c) p3 t4(d) p4 p6 t5(f) p7 t8(f) p8 图 2 带有初始控制器的活塞杆机 器人装配单元标签 Petri 网模型	t(b)											
p2 t3(c) p3 t4(d) P4 P6 t5(f) P7 t8(f) P8 图 2 带有初始控制器的活塞杆机 器人装配单元标签 Petri 网模型												
图 2 带有初始控制器的活塞杆机 器人装配单元标签 Petri 网模型			f(c)	n t	(d) p	$p \cup p_6$	$t_{-}(f)$	$p_7 t_{\circ}$	$(f) p_8$	/		
器之事件防知性防止的准备性化 器人装配单元标签 Petri 网模型	P_2 $r_{3}(r)$ P_3 $r_{4}(r)$ r_{7} $r_{7}(r)$											
	器人生配单元标签 Potri 网梢刑											
Fig. 2 The labeled Petri net model of the piston rod	Fig. 2 The labeled Petri net model of the piston rod											

各个库所的物理意义如表1 所示,其中 c₁、c₂、c₃ 是控 制器。每个库所中的托肯数表示参与表1 所描述活动的 资源数量或机器人数量。每个部件的装配需要两个不同 的机器人来完成,机器人 A 用于准备和校准装配的零件, 机器人 B 将盖子安装在活塞杆上。

表 1 图 2 标签 Petri 网模型中各个库所的物理意义

 Table 1
 Place descriptions for figure 2

库所	物理意义
p_1	准备加工发动机缸体和曲轴
p_2	机器人A校准曲轴
p_3	机器人 A 获得新活塞杆并将其固定在供工作空间
p_4	发动机缸体就绪并由机器人 B 准备运行
p_5	机器人 B 获得活塞牵引工具
p_6	机器人 B 将活塞杆拉入发动机缸体,并返回牵引工具
p_7	机器人 B 将盖子定位在活塞杆上
p_8	机器人 B 将盖子与活塞杆用螺栓固定
c_1	控制变迁 12、14 的执行
c_2	控制变迁 t5、t9 的执行
c_3	控制变迁 t7、t9 的执行

现考虑该模型的初始资源配置优化问题。给出一个 观测序列 $\omega = cdeffhhg$,计算满足以下条件的初始标识 M_0 : 1)使至少一个与 ω 一致的变迁序列 σ 使能; 2)初始资源($\sum_{i=1}^{8} M_0(p_i)$)+($\sum_{i=1}^{3} M_0(c_i)$)最小。 根据算法1,首先计算出与 ω 一致的变迁序列集合 $S(\omega) = \{t_3t_4t_6t_7t_7t_9t_5, t_3t_4t_6t_7t_8t_9t_9t_5, t_3t_4t_6t_8t_8t_9t_9t_5\}$ 。令 初始标识 $M_0 = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11})^{\mathrm{T}}$, 其中 x_i 表示库所 p_i 和控制库所 c_i 中的托肯数。根据算法 1 考虑以下 3 种情况。

1) 当 $\sigma = t_3 t_4 t_6 t_7 t_7 t_9 t_5$, 根据算法 1 求解下列 ILP 问题:

$$\min\left(\left(\sum_{i=1}^{8} M_{0}(p_{i})\right) + \left(\sum_{i=1}^{3} M_{0}(c_{i})\right)\right)$$

$$\begin{pmatrix}M_{0} \ge \vec{0} \\ M_{0} \ge Pre(\cdot,t_{3}) \\ M_{0} + B \cdot \vec{t_{3}} \ge Pre(\cdot,t_{4}) \\ M_{0} + B \cdot \vec{t_{3}} \ge Pre(\cdot,t_{4}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} \ge Pre(\cdot,t_{6}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} \ge Pre(\cdot,t_{7}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} \ge Pre(\cdot,t_{7}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} \ge Pre(\cdot,t_{9}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + Pre(\cdot,t_{9}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9}) \\ H_{1}\vec{t_{9}} \doteq H \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9}) \\ H_{2}\vec{t_{9}} = H \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9})$$

2) 当 $\sigma = t_3 t_4 t_6 t_7 t_8 t_9 t_9 t_5$, 根据算法 1 求解下列 ILP 问题:

$$\min\left(\left(\sum_{i=1}^{8} M_{0}(p_{i})\right) + \left(\sum_{i=1}^{3} M_{0}(c_{i})\right)\right)$$

$$\begin{cases}M_{0} \ge \vec{0} \\M_{0} \ge Pre(\cdot,t_{3}) \\M_{0} + B \cdot \vec{t_{3}} \ge Pre(\cdot,t_{4}) \\M_{0} + B \cdot \vec{t_{3}} \Rightarrow B \cdot \vec{t_{4}} \ge Pre(\cdot,t_{6}) \\M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} \Rightarrow Pre(\cdot,t_{6}) \\M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} \ge Pre(\cdot,t_{7}) \\M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} \Rightarrow B \cdot \vec{t_{7}} \ge Pre(\cdot,t_{8}) \\M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} \Rightarrow Pre(\cdot,t_{8}) \\M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{8}} \ge Pre(\cdot,t_{9}) \\M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9}) \\M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9}) \\M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9}) \end{cases}$$

计算结果为 2,此时 $M_0 = (0,1,0,0,0,0,0,1,0,0,0)^{\mathrm{T}}$ 。

3) 当 $\sigma = t_3 t_4 t_6 t_8 t_9 t_9 t_5$, 根据算法 1 求解下列 ILP 问题:

$$\min\left(\left(\sum_{i=1}^{8} M_{0}(p_{i})\right) + \left(\sum_{i=1}^{3} M_{0}(c_{i})\right)\right)$$

$$\begin{bmatrix}M_{0} \ge \vec{0} \\ M_{0} \ge Pre(\cdot,t_{3}) \\ M_{0} + B \cdot \vec{t_{3}} \ge Pre(\cdot,t_{4}) \\ M_{0} + B \cdot \vec{t_{3}} \Rightarrow B \cdot \vec{t_{4}} \ge Pre(\cdot,t_{6}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} \Rightarrow Pre(\cdot,t_{6}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} \ge Pre(\cdot,t_{8}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{8}} \ge Pre(\cdot,t_{9}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{8}} \ge Pre(\cdot,t_{9}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9}) \\ M_{0} + B \cdot \vec{t_{3}} + B \cdot \vec{t_{4}} + B \cdot \vec{t_{6}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{7}} + B \cdot \vec{t_{9}} \ge Pre(\cdot,t_{9}) \\ M_{0} +$$

计算结果为 3,此时 $M_0 = (0,1,0,0,0,0,2,0,0,0,0)^{T}$ 。 根据以上计算结果可知,初始资源配置优化结果为 2, 此 时 得 到 的 最 小 初 始 标 识 集 合 为 $\{(0,1,0,0,0,1,0,0,0,0,0)^{T},(0,1,0,0,0,0,0,0,0,0,0,0,0,0)^{T}\}$ 。

4.2 对比分析

在两个初始标识下的变迁发生序列如表 2、3 所示。

表 2 实验结果分析 1

Table 2 Analysis 1 of results

起始标识	发生 变迁	到达标识	生成标签
$(0,1,0,0,0,1,0,0,0,0,0)^{\mathrm{T}}$	t_3	$(0,0,1,0,0,1,0,0,0,0,0)^{\mathrm{T}}$	с
$(0,0,1,0,0,1,0,0,0,0,0)^{\mathrm{T}}$	t_4	$(0,0,0,1,0,1,0,0,0,0,0)^{\mathrm{T}}$	cd
$(0,0,0,1,0,1,0,0,0,0,0)^{\mathrm{T}}$	t_6	$(0,0,0,0,0,2,0,0,0,0,0)^{\mathrm{T}}$	cde
$(0,0,0,0,0,2,0,0,0,0,0)^{\mathrm{T}}$	t_7	$(0,0,0,0,0,1,0,0,0,0,1)^{\mathrm{T}}$	cdef
$(0,0,0,0,0,1,0,0,0,0,1)^{\mathrm{T}}$	t_7	$(0,0,0,0,0,0,0,0,0,0,0,0)^{\mathrm{T}}$	cdeff
$(0,0,0,0,0,0,0,0,0,0,0,0)^{\mathrm{T}}$	t_9	$(0,0,0,0,0,0,0,0,0,1,1)^{\mathrm{T}}$	cdeffg
$(0,0,0,0,0,0,0,0,0,1,1)^{\mathrm{T}}$	t_9	$(0,0,0,0,0,0,0,0,0,0,2,0)^{\mathrm{T}}$	cdeffgg
$(0,0,0,0,0,0,0,0,0,0,2,0)^{\mathrm{T}}$	t_5	$(0,0,0,0,1,0,0,0,0,1,0)^{\mathrm{T}}$	cdeffggh

表 3 实验结果分析 2

Table 3 Analysis 2 of results

起始标识	发生 变迁	到达标识	生成标签
$(0,1,0,0,0,0,0,1,0,0,0)^{\mathrm{T}}$	t_3	$(0,0,1,0,0,0,0,1,0,0,0)^{\mathrm{T}}$	с
$(0,0,1,0,0,0,0,1,0,0,0)^{\mathrm{T}}$	t_4	$(0,0,0,1,0,0,0,1,0,0,0)^{\mathrm{T}}$	cd
$(0,0,0,1,0,0,0,1,0,0,0)^{\mathrm{T}}$	t_6	$(0,0,0,0,0,1,0,1,0,0,0)^{\mathrm{T}}$	cde
$(0,0,0,0,0,1,0,1,0,0,0)^{\mathrm{T}}$	t_7	$(0,0,0,0,0,0,1,1,0,0,0)^{\mathrm{T}}$	cdef
$(0,0,0,0,0,0,1,1,0,0,0)^{\mathrm{T}}$	t_8	$(0,0,0,0,0,0,0,0,2,0,0,0)^{\mathrm{T}}$	cdeff
$(0,0,0,0,0,0,0,2,0,0,0)^{\mathrm{T}}$	t_9	$(0,0,0,0,0,0,0,1,0,1,0)^{\mathrm{T}}$	cdeffg
$(0,0,0,0,0,0,0,1,0,1,0)^{\mathrm{T}}$	t_9	$(0,0,0,0,0,0,0,0,0,0,2,0)^{\mathrm{T}}$	cdeffgg
$(0,0,0,0,0,0,0,0,0,0,2,0)^{\mathrm{T}}$	t_5	$(0,0,0,0,1,0,0,0,0,1,0)^{\mathrm{T}}$	cdeffggh

根据实验分析结果可知,若利用 Petri 网状态空间分析法求解需要计算至少 32 个可达标识,而且状态空间在最坏的情况下会呈指数级增长,因此复杂度较高。本文提出的算法将初始资源配置优化问题转化为 ILP 问题,因此能够避免计算状态空间,有效地提高了计算效率。

5 结 论

本文基于标签 Petri 网提出了一种 AMS 初始资源配 置优化的方法。根据标签 Petri 网的结构化特性和变迁 发生规则,将 AMS 初始资源配置优化问题转化为 ILP 问 题,并利用 Lingo 进行求解。实验表明,提出的方法能够 避免计算状态空间,计算效率较高,具有较强的实用性。

在 AMS 的实际生产中,每个事件的发生都是需要一 定成本的,因此,未来的研究方向之一是在考虑事件发生 成本的前提下对 AMS 进行资源配置优化。

参考文献

- [1] DOTOLI M. A fault monitor for automated manufacturing systems using a hybrid Petri nets formalism [J]. Transactions of the Institute of Measurement and Control, 2011, 33(1): 149-167.
- [2] CABASINO M P, GIUA A, SEATZU C. Fault detection for discrete event systems using Petri nets with unobservable transitions [J]. Automatica, 2010, 46(9):1531-1539.
- [3] RAN N, SU H Y, WANG S G. An improved approach to test diagnosability of bounded Petri nets [J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2):297-303.
- [4] RAN N, SU H Y, GIUA A, et al. Codiagnosability analysis of bounded Petri nets [J]. IEEE Transactions on Automatic Control, 2018, 63(4):1192-1199.
- [5] RAN N, GIUA A, SEATZU C. Enforcement of diagno- sability in labeled Petri nets via optimal sensor selection [J]. IEEE Transactions on Automatic Control, 2019, 64(7): 2997-3004.
- [6] AMMOUR R, LECLERCQ E, SANLAVILLE E, et al. Fault prognosis of timed stochastic discrete event systems with bounded estimation error [J]. Automatica, 2017, 82:35-41.
- [7] YIN X. Verification of prognosability for labeled Petri nets [J]. IEEE Transactions on Automatic Control, 2018, 63(6): 1738-1744.
- [8] YOU D, WANG S G, SEATZU C. Verification of fault-predictability in labeled Petri nets using predictor graphs [J]. IEEE Transactions on Automatic Control, 2019, doi: 10.1109/TAC. 2019. 2897272.
- [9] 方欢,陆阳,方贤文,等. 基于部分可观 Petri 网的机车

故障诊断方法研究[J]. 电子测量与仪器学报,2015, 29(5): 722-729.

FANG H, LU Y, FANG X W, et al. Research on fault diagnosis method of locomotives dispatching based on partially observed Petri nets [J]. Journal of Electronic Measurement and Instrumentation, 2015, 29 (5): 722-729.

- [10] RAN N, SU H Y, WANG S G. An improved approach to test diagnosability of bounded Petri nets [J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2):297-303.
- [11] YOU D, WANG S G, DAI W Z, et al. An approach for enumerating minimal siphons in a subclass of Petri nets [J]. IEEE Access, 2017(6): 2169-3536.
- [12] WANG S G, YOU D, ZHOU M C. A necessary and sufficient condition for a resource subset to generate a strict minimal siphon in S4PR [J]. IEEE Transactions on Automatic Control, 2017, 62(8):4173-4179.
- WANG S G, YOU D, SEATZU C. A novel approach for constraint transformation in Petri nets with uncontrollable transitions [J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2018, 48 (8): 1403-1410.
- [14] 郝真鸣,葛卫华,郝晋渊,等.嵌入式电梯运行状态监测系统研究[J].电子测量与仪器学报,2019,33(8): 187-193.

HAO ZH M, GE W H, HAO J Y, et al. Research on embedded elevator running state monitoring system [J].Journal of Electronic Measurement and Instrumentation, 2019, 33(8): 187-193.

[15] 万颖,周强,马向宇.一种物流园区拆装箱进出库作业系统资源优化配置方法[J].物流技术,2017,36(3):66-70,96.
 WAN Y, ZHOU Q, MA X Y. An optimal resource

allocation method for stuffing/destuffing and inbound/ outbound system of logistics parks [J]. Logistics Technology, 2017, 36(3):66-70,96.

- [16] 钱伟伟,王有远,张振华.基于使用阈值和时间有色 Petri 网的任务与资源分配研究[J].组合机床与自动 化加工技术,2019(2):154-156,160.
 QIAN W W, WANG Y Y, ZHANG Z H. Navigational maintenance resource scheduling and distribution method and its application research [J]. Journal of Shenyang University of Technology, 2019(2):154-156,160.
- [17] 许晨晨, 邵荃. 基于赋时 Petri 网的高高原机场应急资源配置优化[J]. 航空计算技术, 2019, 49(1):67-72.
 XU CH CH, SHAO Q. Optimization of emergency resource allocation of super-high plateau airport based on timed Petri net [J]. Aeronautical Computing Technique, 2019, 49(1): 67-72.

[18] 蒋陵平,徐文强,葛杭,等. 通航维修资源调度分配方法及应用研究[J]. 西安航空学院学报,2019,37(1):
 3-10.
 JIANG L P, XU W Q, GE H, et al. Optimization model

and method for resource configuration based on RCEPN [J]. Journal of Xi' an Aeronautical University, 2019,37(1):3-10.

- [19] MARGOT F. Symmetry in integer linear programming [C]. 50 Years of Integer Programming 1958-2008. Berlin Heidelberg:Springer, 2010:647-686.
- [20] 袁崇义. Petri 网原理[M]. 北京:电子工业出版 社,1998.

YUAN CH Y. Theory of Petri Nets [M]. Beijing: Publishing House of Electronics Industry, 1998.

[21] MOODY J O, ANTSAKLIS P J. Petri net supervisors for AMS with uncontrollable and unobservable transitions [J]. IEEE Transactions on Automatic Control, 2000, 45(3): 462-476.

作者简介

郝晋渊,2013年于河北大学获学士学 位,2015年于澳大利亚新南威尔士大学 获硕士学位,现为河北大学讲师,主要研 究方向为人工智能、信息技术、新媒体传 播等。

E-mail:hjy@hbu.edu.cn

Hao Jinyuan, received the B. Sc. degree from Hebei

University in 2013, and the M. Sc. degree from University of New South Wales, Sydney, Australia, in 2015. She a lecturer at Hebei University now. Her main research interests include artificial intelligence, information technology and new media communication.

孙丹丹,2018 年于燕山大学里仁学院 获得学士学位,现为河北大学硕士研究生, 主要研究方向为智能系统、系统优化等。 E-mail:879390599@qq.com

Sun Dandan received her B. Sc. degree

from Liren College of Yanshan University in 2018. She is currently a M. Sc. candidate at Hebei University. Her main research interests include cyber-systems and system optimization.

冉宁(通信作者),2010年于河北大学 获学士学位,2013年于华北电力大学获硕 士学位,2017年于浙江大学获博士学位,现 为河北大学讲师,主要研究方向为智能系统 与控制、系统优化等。

E-mail: ranning87@ hotmail. com

Ran Ning (Corresponding author) received his B. Sc. degree from Hebei University in 2010, M. Sc. degree from North China Electric Power University in 2013, and Ph. D. degree from Zhejiang University in 2017. He is currently a lecturer at Hebei University. His main research interests include cyber-systems and control, system optimization.