侯庆璐,高 银,王茂华,李 俊.结构稀疏通道先验盲图像去模糊方法[J].电子测量与仪器学报,2023,37(12):107-116 |
结构稀疏通道先验盲图像去模糊方法 |
Blind image deblurring method with structural sparse channel prior |
|
DOI: |
中文关键词: 图像处理 计算装置 盲去模糊 结构稀疏通道先验 模糊核估计 |
英文关键词:image processing computing device blind deblurring structurally sparse channel priors blur kernel estimation |
基金项目:国家自然科学基金(62001452)、中国福建光电信息科学与技术创新实验室(闽都创新实验室) (2021ZZ116)、福建省科技计划项目(2022-ZD-001)资助 |
|
Author | Institution |
Hou Qinglu | 1. School of Mathematics and Physics, Lanzhou Jiaotong University,2. Fujian Institute of Research on the Structure of Matter, CAS |
Gao Yin | 2. Fujian Institute of Research on the Structure of Matter, CAS,3. Quanzhou lnstitute of Equipment Manufacturing, Haixi Research Institute, CAS |
Wang Maohua | 2. Fujian Institute of Research on the Structure of Matter, CAS |
Li Jun | 1. School of Mathematics and Physics, Lanzhou Jiaotong University,2. Fujian Institute of Research on the Structure of Matter, CAS,3. Quanzhou lnstitute of Equipment Manufacturing, Haixi Research Institute, CAS |
|
摘要点击次数: 508 |
全文下载次数: 819 |
中文摘要: |
针对盲图像去模糊过程中主结构不准确和边缘不清晰问题,提出了一种结构稀疏通道先验(SSCP)盲图像去模糊方法。
SSCP 表示模糊图像比清晰图像具有更少结构稀疏通道的先验方法。 利用 SSCP 的性能特性,将其作为新的正则化项引入经典
去模糊模型,构建盲去模糊新模型,实现对模糊核的准确估计。 通过坐标下降法,交替优化求解潜像与模糊核变量。 最后,通过
反卷积得到去模糊的清晰复原图像,在基准数据集和自然状态模糊图像上开展主观和客观对比实验,并进行人脸和低亮度真实
模糊图像的应用拓展实验。 实验结果表明,提出的方法在模糊去除、结构恢复、边缘保留和视觉效果方面的性能比经典去模糊
方法平均提高了 1. 72%,通过该方法设计出的计算装置能够实现机器视觉领域中模糊图像的高精度清晰化处理。 |
英文摘要: |
A structure sparse channel prior ( SSCP) blind image deblurring approach is presented to address the issues of inaccurate
major structures and unclear edges in the blind image deblurring process. A prior method of SSCP shows that blurred images have less
structured sparse channels than sharp images. Using the performance features of SSCP, it is introduced as a new regularization term into
the standard deblurring model, and a novel blind deblurring model is created to achieve accurate estimation of the blur kernel. Through
the coordinate descent approach alternately optimizes the latent image and blurry kernel variables. Finally, deconvolution is used to
obtain deblurred clear restored images, subjective and objective comparison experiments on benchmark datasets and natural state blurred
images, and application expansion experiments on human faces and low-brightness real blurred images. The experimental results show
that the proposed method outperforms the classical deblurring method in terms of blur removal, structure restoration, edge retention, and
visual effect by an average of 1. 72%, and the computing device designed by this method can achieve a high-precision clarity to process
blurred images in the field of machine vision. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|