郝 喆,于春战,张佳林,席攀峰,窦琢仑,孙治博.基于 SSA-GB-ELM 的并联式六维加速度传感器非线性解耦[J].电子测量与仪器学报,2023,37(10):106-114
基于 SSA-GB-ELM 的并联式六维加速度传感器非线性解耦
Nonlinear decoupling of parallel six dimensional acceleration sensor based on grey box extreme learning machine optimized by sparrow search algorithm
  
DOI:
中文关键词:  非线性解耦  六维加速度传感器  极限学习机  麻雀搜索算法  最大类间方差
英文关键词:nonlinear decoupling  six dimensional acceleration sensor  extreme learning machine  sparrow search algorithm  maximum inter-class variance
基金项目:国家自然科学基金青年科学基金(52205043)项目资助
作者单位
郝 喆 1. 北京林业大学工学院 
于春战 1. 北京林业大学工学院 
张佳林 1. 北京林业大学工学院 
席攀峰 1. 北京林业大学工学院 
窦琢仑 1. 北京林业大学工学院 
孙治博 2. 北京航空航天大学北航学院 
AuthorInstitution
Hao Zhe 1. School of Technology,Beijing Forestry University 
Yu Chunzhan 1. School of Technology,Beijing Forestry University 
Zhang Jialin 1. School of Technology,Beijing Forestry University 
Xi Panfeng 1. School of Technology,Beijing Forestry University 
Dou Zhuolun 1. School of Technology,Beijing Forestry University 
Sun Zhibo 2. Beijing University of Aeronautics and Astronautics, Beihang Universigy 
摘要点击次数: 667
全文下载次数: 845
中文摘要:
      六维加速度传感器的高精度测量可有效提高底盘防倾翻控制系统的控制效果,但并联式弹性元件的维间耦合会给传感 器带来非线性误差,采用极限学习机算法进行标定解耦可以有效提高传感器的测量精度。 但传统极限学习机非线性解耦算法 精度较低,使用麻雀搜索算法可以获得极限学习机的最佳初始权值、阈值。 同时,将最大类间方差法融入到麻雀算法优化的极 限学习机中,可以探索六维加速度传感器固有耦合关系,把传统极限学习机黑箱模型转换为灰箱模型,从而提出一种麻雀搜索 优化灰箱极限学习机 (sparrow search algorithm-gray box-extreme learning machine,SSA-GB-ELM)的解耦算法。 通过实验验证,使 用该算法的并联式六维加速度传感器非线性解耦精度显著提高,Ⅰ类误差最大为 0. 023%,Ⅱ类误差最大为 0. 046%,解耦时间 为 1. 095 s,可以高效解决六维加速度传感器非线性耦合问题。
英文摘要:
      The high-precision measurement of the six dimensional acceleration sensor can effectively improve the control effect of the chassis anti-rollover control system, but the inter-dimensional coupling of parallel elastic elements can bring nonlinear errors to the sensor. The use of extreme learning machine algorithm for calibration and decoupling can effectively improve the measurement accuracy of the sensor. However, the traditional extreme learning machine nonlinear decoupling algorithm has low accuracy. The use of the sparrow search algorithm can obtain the optimal initial weights and thresholds of the extreme learning machine. At the same time, the maximum between-class variance method is integrated into the sparrow algorithm optimized extreme learning machine, which can explore the inherent coupling relationship of the six dimensional acceleration sensor. By converting the traditional black-box extreme learning machine model into a gray-box model, a decoupling algorithm for sparrow search optimization gray box extreme learning machine (SSAGB-ELM) is proposed. Through experimental verification, the nonlinear decoupling accuracy of the parallel six dimensional acceleration sensor using this algorithm is significantly improved, with a maximum error of 0. 023% for class I errors and 0. 046% for class II errors. The decoupling time is 1. 095 seconds, which can effectively solve the nonlinear coupling problem of six dimensional acceleration sensors.
查看全文  查看/发表评论  下载PDF阅读器