张丹丹,李璐璐,顾 健,任姣姣,李丽娟,张霁旸,陈 奇.高分辨 THz-TDS 采集传输的嵌入式设计与优化[J].电子测量与仪器学报,2023,37(12):29-36 |
高分辨 THz-TDS 采集传输的嵌入式设计与优化 |
Embedded design and optimization of high-resolutionTHz-TDS acquisition and transmission |
|
DOI: |
中文关键词: 太赫兹 现场可编程门阵列 信号采集 维纳滤波反卷积 |
英文关键词:Terahertz field programmable gate array signal acquisition Wiener filtering deconvolution |
基金项目:中山市第九批创新科研团队(GXTD2022010)、中山市第二批社会公益和基础研究项目(2022B2012)、吉林省自然科学基金项目(YDZJ202301ZYTS242)资助 |
|
Author | Institution |
Zhang Dandan | 1. Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of
Education,Changchun University of Science and Technology,2. School of Optoelectronic Engineering,
Changchun University of Science and Technology,3. Zhongshan Research Institute of Changchun
University of Science and Technology |
Li Lulu | 1. Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of
Education,Changchun University of Science and Technology,2. School of Optoelectronic Engineering,
Changchun University of Science and Technology,3. Zhongshan Research Institute of Changchun
University of Science and Technology |
Gu Jian | 1. Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of
Education,Changchun University of Science and Technology,2. School of Optoelectronic Engineering,
Changchun University of Science and Technology,3. Zhongshan Research Institute of Changchun
University of Science and Technology |
Ren Jiaojiao | 1. Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of
Education,Changchun University of Science and Technology,2. School of Optoelectronic Engineering,
Changchun University of Science and Technology,3. Zhongshan Research Institute of Changchun
University of Science and Technology |
Li Lijuan | 1. Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of
Education,Changchun University of Science and Technology,2. School of Optoelectronic Engineering,
Changchun University of Science and Technology,3. Zhongshan Research Institute of Changchun
University of Science and Technology |
Zhang Jiyang | 1. Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of
Education,Changchun University of Science and Technology,2. School of Optoelectronic Engineering,
Changchun University of Science and Technology,3. Zhongshan Research Institute of Changchun
University of Science and Technology |
Chen Qi | 1. Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of
Education,Changchun University of Science and Technology,2. School of Optoelectronic Engineering,
Changchun University of Science and Technology,3. Zhongshan Research Institute of Changchun
University of Science and Technology |
|
摘要点击次数: 833 |
全文下载次数: 968 |
中文摘要: |
为了满足太赫兹高分辨检测及实时处理需求,利用光电导天线产生和探测太赫兹时域光谱信号,基于现场可编程门阵
列(field programmable gate array,FPGA)实现太赫兹时域光谱的采集、维纳滤波反卷积处理、传输和上位机显示等功能。 将采集
到的太赫兹时域光谱数据进行维纳滤波反卷积处理,实现还原太赫兹信号、提高时间分辨率以及降噪的效果,将数据由以太网
传输的方式传输到上位机进行实时显示,针对实际检测中太赫兹信号反卷积后脉宽较宽,提出在维纳滤波反卷积算法中引入与
频率相关的函数对算法进行优化,使信号的脉宽变窄,提高检测精度。 优化的维纳滤波反卷积算法处理结果相比于原始算法信
噪比增加 7 dB,脉宽降低 0. 2 ps,实现更高的检测分辨能力,算法在 FPGA 中实现,精度误差小于 0. 7%,处理效率提升 14. 29
倍,并且减少后期上位机处理时间。 |
英文摘要: |
In order to meet the requirements of terahertz high-resolution detection and real-time processing, the photoconductive antenna
is used to generate and detect terahertz time-domain spectral signals. Based on the field programmable gate array, the functions of
terahertz time-domain spectrum acquisition, Wiener filtering deconvolution processing, transmission and host computer display are
realized. The collected terahertz time-domain spectral data is subjected to Wiener filtering deconvolution processing to achieve the effect
of restoring terahertz signals, improve time resolution and noise reduction. The data is transmitted to the host computer by Ethernet
transmission for real-time display. In view of the wide pulse width after deconvolution of terahertz signals in actual detection, it is
proposed to introduce a frequency-related function into the Wiener filtering deconvolution algorithm to optimize the algorithm, so that the
pulse width of the signal becomes narrower and the detection accuracy is improved. Compared with the original algorithm, the signal-tonoise ratio of the optimized Wiener filter deconvolution algorithm is increased by 7 dB, the pulse width is reduced by 0. 2 ps, and the
higher detection resolution is realized. The algorithm is implemented in FPGA, the accuracy error is less than 0. 7%, the processing
efficiency is improved by 14. 29 times, and the post-processing time of the host computer is reduced. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|