任克强,胡梦云,喻玲娟.基于KAZE的自适应模糊图像配准算法[J].电子测量与仪器学报,2017,31(4):559-565
基于KAZE的自适应模糊图像配准算法
Adaptive registration algorithm of blurred image based on KAZE
  
DOI:10.13382/j.jemi.2017.04.010
中文关键词:  图像配准  非线性尺度空间  KAZE  空间余弦相似度  自适应阈值
英文关键词:image registration  nonlinear scale space  KAZE  space cosine similarity  adaptive threshold
基金项目:国家自然科学基金(61501210)资助项目
作者单位
任克强 江西理工大学信息工程学院赣州341000 
胡梦云 中国移动通信集团江西有限公司新余分公司新余338000 
喻玲娟 江西理工大学信息工程学院赣州341000 
AuthorInstitution
Ren Keqiang School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China 
Hu Mengyun Xinyu Branch, China Mobile Group Jiangxi Co. Ltd., Xinyu 338000, China 
Yu Lingjuan School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China 
摘要点击次数: 3235
全文下载次数: 18348
中文摘要:
      为了提高图像配准算法对于模糊图像的配准性能,提出一种融合非线性尺度空间和空间余弦相似度的自适应模糊图像配准算法。该算法将非线性尺度空间理论应用于图像的局部特征提取,采用KAZE算法提取图像的特征点,以构成M SURF特征描述符;利用空间余弦对图像特征点进行匹配,并且根据不同的图像特性进行自适应阈值匹配,以得到便于寻求最优变换关系的合理数量的匹配点对;最后采用RANSAC算法滤除误匹配点对,以提升算法精度。实验结果表明,该算法可以有效地提高模糊图像配准的匹配准确率和精度,准确率和精度比KAZE算法最大可以提高25%和7.909像素,具有更好的配准性能。
英文摘要:
      In order to improve the blurred image registration properties of image registration algorithm, an adaptive blurred image registration algorithm fused nonlinear scale space and space cosine similarity is proposed. The algorithm adopts the nonlinear scale space theory to extract the local feature of the image, and the feature points of the image are extracted by the KAZE algorithm to form the M SURF feature descriptor. Using the space cosine to match the feature points, and match the adaptive threshold according to the different characteristics of the image to seek the optimal transformation relations of reasonable quantity of matching points. Finally, the RANSAC algorithm is used for excluding mistake matching points to improve the accuracy. The experimental results show that the algorithm can effectively improve the matching accuracy and precision of the fuzzy image registration, the matching accuracy and precision can be improved up to 25% and 7.909 pixels, and has better registration performance.
查看全文  查看/发表评论  下载PDF阅读器