李 斌,郭自强,高 鹏.改进北方苍鹰算法在光伏阵列中应用研究[J].电子测量与仪器学报,2023,37(7):131-139
改进北方苍鹰算法在光伏阵列中应用研究
Application of improved northern goshawk optimization algorithm in photovoltaic array
  
DOI:
中文关键词:  改进北方苍鹰算法  光伏阵列  故障诊断  混合核极限学习机
英文关键词:improved northern goshawk optimization  photovoltaic array  fault diagnosis  hybrid kernel extreme learning machine
基金项目:国家自然科学基金(51674136,52104160)项目资助
作者单位
李 斌 1.辽宁工程技术大学电气与控制工程学院 
郭自强 1.辽宁工程技术大学电气与控制工程学院 
高 鹏 1.辽宁工程技术大学电气与控制工程学院 
AuthorInstitution
Li Bin 1.Faculty of Electrical and Control Engineering, Liaoning Technical University 
Guo Ziqiang 1.Faculty of Electrical and Control Engineering, Liaoning Technical University 
Gao Peng 1.Faculty of Electrical and Control Engineering, Liaoning Technical University 
摘要点击次数: 866
全文下载次数: 1207
中文摘要:
      针对北方苍鹰优化算法(NGO)存在收敛精度低和易陷入局部最优等问题,提出一种改进北方苍鹰算法( INGO),并应 用于光伏阵列故障诊断。 首先,利用 Circle 映射、自适应权重因子和 Levy 飞行策略改进了北方苍鹰优化算法,结合高斯检测机 制和混合核极限学习机(HKELM)搭建 INGO-HKELM 故障诊断模型。 其次,将 INGO 算法与 NGO、粒子群算法(PSO)、鲸鱼算法 (WOA)在测试函数上进行比较,表明在寻优能力、稳定性等方面具有优越性。 然后,分析不同运行状态下光伏阵列运行特征, 提出一种 5 维故障特征向量,作为数据的输入。 最后,将 4 种算法分别对 HKELM 的核参数进行优化并实现故障分类。 结果表 明,所提方法能够准确地检测出光伏组件发生的异常状态,INGO-HKELM 模型准确率达到 93. 74%,验证了所提算法的有效性 和可行性。
英文摘要:
      Aiming at the problems of the northern goshawk optimization algorithm (NGO), such as low convergence accuracy and easy to fall into local optimum, an improved northern goshawk optimization algorithm (INGO) is proposed and applied to the fault diagnosis of photovoltaic array. Firstly, circle mapping, adaptive weight factor and Levy flight strategy are used to improve the INGO. Combined with Gaussian detection mechanism and hybrid kernel extreme learning machine ( HKELM), the INGO-HKELM fault diagnosis model is built. Secondly, the INGO algorithm is compared with the NGO, the particle swarm optimization algorithm ( PSO), and the whale optimization algorithm (WOA) on the test functions, which shows that it has advantages in optimization ability and stability. Then, the operating characteristics of photovoltaic arrays under different operating states are analyzed, and a 5-D fault feature vector is proposed as the input of data. Finally, the four algorithms are used to optimize the kernel parameters of HKELM and achieve fault classification. The results show that the proposed method can accurately detect abnormal states of photovoltaic modules, and the accuracy of INGO-HKELM model reaches 93. 74%, which verifies the effectiveness and feasibility of the proposed algorithm.
查看全文  查看/发表评论  下载PDF阅读器