米根锁,窦媛媛.基于 CEEMDAN 与改进核极限学习机的S700K 转辙机健康状态诊断[J].电子测量与仪器学报,2023,37(6):232-239
基于 CEEMDAN 与改进核极限学习机的S700K 转辙机健康状态诊断
Health state diagnosis of S700K switch machine based on CEEMDAN and improved kernel based extreme learning machine
  
DOI:
中文关键词:  CEEMDAN  改进核极限学习机  S700K 转辙机  健康状态诊断
英文关键词:CEEMDAN  improved kernel based extreme learning machine  S700K switch machine  health status diagnosis
基金项目:甘肃省科学计划项目( 21JR7RA305)、中央引导地方科技发展资金项目( 22ZY1QA005)、 兰州交通大学青年科学研究基金项目(1200061027)资助
作者单位
米根锁 1.兰州交通大学自动化与电气工程学院 
窦媛媛 1.兰州交通大学自动化与电气工程学院 
AuthorInstitution
Mi Gensuo 1.School of Automation and Electrical Engineering, Lanzhou Jiaotong University 
Dou Yuanyuan 1.School of Automation and Electrical Engineering, Lanzhou Jiaotong University 
摘要点击次数: 789
全文下载次数: 970
中文摘要:
      针对 S700K 转辙机健康状态分类过于粗放、诊断速度慢、效率低的问题,提出一种基于 CEEMDAN 与改进核极限学习机 ( kernel based extreme learning machine,KELM)的诊断方法。 首先,对 S700K 转辙机功率数据进行自适应噪声完备集合经验模态 分解,得到 6 个本征模态函数(intrinsic mode function,IMF);然后,计算本征模态函数的模糊熵值(fuzzy entropy, fuzzyEn, FE)作 为表征转辙机健康状态的特征参数;最后,利用麻雀算法(sparrow search algorithm,SSA)改进的核极限学习机对 9 种健康状态进 行健康诊断,并与 SVR 和 ELM 模型进行对比。 仿真结果表明,改进核极限学机模型准确率、精确率、召回率等指标分别达到 97. 8%、98. 0%、97. 8%,相较于 SVR 和 ELM 模型,SSA-KELM 模型在保证运行速度的基础上,将诊断准确率至少提高 2. 2%。
英文摘要:
      Aiming at the problems of extensive classification of health status of S700K switch machine, slow diagnosis speed and low efficiency; a diagnosis method based on CEEMDAN and kernel based extreme learning machine (KELM) is proposed. Firstly, the power data of S700K switch machine is decomposed by adaptive noise complete set empirical mode decomposition, and six intrinsic mode functions (IMF) are obtained. Then, the fuzzy entropy (FE) value of the intrinsic mode function is calculated as the characteristic parameter to characterize the health state of the switch machine. Finally, the kernel limit learning machine improved by sparrow search algorithm (SSA) is used to diagnose nine health states, and compared with SVR and ELM models. The simulation results show that the accuracy rate and the recall rate of the improved kernel based extreme learning machine model are 97. 8%, 98. 0% and 97. 8% respectively. Compared with SVR and ELM models, SSA-KELM model improves the diagnostic accuracy rate by at least 2. 2% on the basis of ensuring the running speed.
查看全文  查看/发表评论  下载PDF阅读器