文礼杰,谢 荣,许军立,刘 峥.基于相容系数的多传感器融合目标识别方法[J].电子测量与仪器学报,2023,37(4):142-153 |
基于相容系数的多传感器融合目标识别方法 |
Multi-sensor fusion target recognition method based on compatibility coefficient |
|
DOI: |
中文关键词: 多传感器融合 相容系数 多假设思想 DSmT 改进证据冲突重分配 |
英文关键词:multi-sensor fusion compatibility coefficient multi-hypothetical thinking DSmT improved evidence conflict redistribution |
基金项目:国家自然科学基金(62001346)、CASC 多传感器探测与识别技术研发中心种子基金(ZZJJ202102)项目资助 |
|
|
摘要点击次数: 1180 |
全文下载次数: 1214 |
中文摘要: |
针对车型识别技术存在类别判定冲突问题,提出基于相容系数的多传感器融合目标识别方法。 首先,采用多假设思想
实现多传感器异构数据聚类合并获取单帧融合检测结果;然后,计算证据之间的相容系数对证据冲突重新分配,结合 DezertSmarandache 理论(DSmT)来处理单帧融合后可能出现的证据冲突情况,并获取目标类别的准确识别结果。 实测数据结果表明,
该方法能克服传感器检测范围受限问题和类别判定冲突问题,目标识别准确率可达 93%以上,降低了目标识别的漏检率和误
检率,可达到良好的目标识别准确性能。 |
英文摘要: |
Aiming at the problem of class determination conflict in vehicle recognition technology, a multi-sensor fusion target recognition
method based on compatibility coefficient is proposed. Firstly, multi-hypothesis thinking is used to realize multi-sensor heterogeneous
data clustering and merging to obtain single-frame fusion detection results; then, the compatibility coefficient between evidences is
calculated to redistribute evidence conflicts, and the single-frame processing is combined with Dezert-Smarandache theory ( DSmT)
conflicts of evidence that may arise after fusion, and obtain accurate identification results of the target category. The results of actual
measurement data show that this method can overcome the problem of limited sensor detection range and conflict of category
determination, and the target recognition accuracy rate can reach more than 93%, which reduces the missed detection rate and false
detection rate of target recognition, and can achieve good target recognition accurate performance. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|