蒯 晓,丁 飞,张登银.多分支融合注意力机制的车道线检测模型[J].电子测量与仪器学报,2023,37(4):35-43
多分支融合注意力机制的车道线检测模型
Lane detection model of multi-branch fusion attention mechanism
  
DOI:
中文关键词:  车道线检测  特征融合  多分支结构  注意力机制  激活函数  跳跃连接结构
英文关键词:lane line detection  fusion of features  multi-branch structure  attention mechanism  activation function  skip connection structure
基金项目:国家自然科学基金(61872423)、江苏省高等学校自然科学研究重大项目(19KJA180006)资助
作者单位
蒯 晓 1.南京邮电大学物联网学院 
丁 飞 1.南京邮电大学物联网学院 
张登银 1.南京邮电大学物联网学院 
AuthorInstitution
Kuai Xiao 1.School of Internet of Things, Nanjing University of Posts and Telecommunications 
Ding Fei 1.School of Internet of Things, Nanjing University of Posts and Telecommunications 
Zhang Dengyin 1.School of Internet of Things, Nanjing University of Posts and Telecommunications 
摘要点击次数: 819
全文下载次数: 1295
中文摘要:
      为了解决目前车道线检测过程中特征融合不充分、检测精确度低和鲁棒性差的问题, 本文提出一种融合多分支结构和 注意力机制的车道线检测模型 (fusion of multi-branch structure and attention mechanism network,FMANet), 图像编码部分采用多 分支结构和注意力机制, 并选择 swish 作为激活函数, 图像解码部分采用跳跃连接结构, 实现跨层特征融合。 本文利用 TuSimple 公开数据集对 FMANet 模型进行评估与验证, 实验结果表明, 本文所提的 FMANet 模型的 mAP 指标接近 97. 25%, 车 道线检测精确度达到 98. 15%, 此外,通过 CULane 数据集验证 FMANet 模型在不同场景下的检测具有更好的鲁棒性。
英文摘要:
      In order to solve the problems of inadequate feature fusion, low detection accuracy and poor robustness in current lane detection, this paper proposes a lane detection model called fusion of multi-branch structure and attention mechanism network (FMANet). In the image coding part, fusion of multi-branch structure and attention mechanism is adopted. swish is selected as the activation function, and the image decoding part adopts the jump connection structure to achieve cross-layer feature fusion. In this paper, TuSimple public dataset was used to evaluate and verify the FMANet model. The experimental results show that the mAP index of the FMANet model proposed in this paper is close to 97. 25%, and the lane detection accuracy reaches 98. 15%. In addition, CULane dataset verifies that the FMANet model has better robustness in different scenarios.
查看全文  查看/发表评论  下载PDF阅读器