陈维兴,常东润,李宗帅.基于改进生成对抗网络与 ConvLSTM 的航空发动机剩余寿命预测方法[J].电子测量与仪器学报,2023,37(3):211-221
基于改进生成对抗网络与 ConvLSTM 的航空发动机剩余寿命预测方法
Aeroengine residual life prediction method based on improved generative adversarial network and ConvLSTM
  
DOI:
中文关键词:  航空发动机  Wasserstein 距离  梯度惩罚项  条件式生成对抗网络  剩余寿命预测
英文关键词:aeroengine  Wasserstein distance  gradient penalty  conditional generation of countermeasure network  remaining life prediction
基金项目:国家自然科学基金委员会-中国民航联合研究基金(U1933107)、天津市教委自然科学科研基金(2018KJ237)、中央高校基本科研业务费民航大学专项(3122020025)项目资助
作者单位
陈维兴 1.中国民航大学电子信息与自动化学院 
常东润 1.中国民航大学电子信息与自动化学院 
李宗帅 1.中国民航大学电子信息与自动化学院 
AuthorInstitution
Chen Weixing 1.College of Electronic Information and Automation, Civil Aviation University of China 
Chang Dongrun 1.College of Electronic Information and Automation, Civil Aviation University of China 
Li Zongshuai 1.College of Electronic Information and Automation, Civil Aviation University of China 
摘要点击次数: 1316
全文下载次数: 1376
中文摘要:
      针对航空发动机运行周期内故障数据难以采集而造成的数据失衡等问题,提出一种基于 Wasserstein 距离与梯度惩罚 措施的条件生成对抗网络与卷积长短时记忆网络相结合的预测模型。 首先,使用 WCGAN-GP 模型学习预处理后的时序数据的 深层分布特征;然后,利用生成器生成故障样本并与真实样本混合,作为训练集输入到基于 ConvLSTM 网络的预测模型中进行 训练。 基于 C-MAPSS 数据集开展验证比较,结果表明:与单一真实样本训练预测模型相比,使用混合数据时性能指标 RMSE 和 Score 平均下降了 12. 65%和 48. 95%。
英文摘要:
      A prediction model based on Wasserstein conditional generative adversarial network-gradient penalty ( WCGAN-GP) and convolution long and short-term memory network (ConvLSTM) is proposed to address the problem of unbalanced data caused by the difficulty of collecting fault data during the operating cycle of an aero-engine. First, a WCGAN-GP model is used to learn the deep distribution characteristics of the pre-processed time-series data; then, a generator is used to generate fault samples and mix them with real samples as a training set to input into the prediction model based on the ConvLSTM network for training. Through testing with CMAPSS data set, the results show that compared with the single real sample training prediction model, the performance indexes RMSE and score of the model using mixed data are reduced by 12. 65% and 48. 95% on average.
查看全文  查看/发表评论  下载PDF阅读器