周静雷,贺家琛,崔 琳.CNN-GRU 和 SSA-VMD 在扬声器异常声分类中的应用[J].电子测量与仪器学报,2023,37(3):161-168 |
CNN-GRU 和 SSA-VMD 在扬声器异常声分类中的应用 |
Application of CNN-GRU and SSA-VMD in loudspeaker abnormal sound classification |
|
DOI: |
中文关键词: 扬声器异常声 变分模态分解 卷积神经网络 门控循环单元 麻雀搜索算法 |
英文关键词:loudspeaker abnormal sound variational mode decomposition convolutional neural networks gated recurrent unit sparrow
search algorithm |
基金项目:国家自然科学基金青年项目(61901347)、陕西省教育厅科技计划项目(18JK0342)资助 |
|
|
摘要点击次数: 1049 |
全文下载次数: 930 |
中文摘要: |
为了提高扬声器异常声分类的平均准确率,提出用卷积神经网络加门控循环单元(convolutional neural network plus gated
recurrent unit, CNN-GRU) 和 麻 雀 搜 索 算 法 优 化 变 分 模 态 分 解 ( sparrow search algorithm optimization variational modal decomposition,SSA-VMD)模型进行扬声器异常声分类。 在特征提取方面,用 SSA-VMD 模型,确定 VMD 中二次惩罚因子(α)和
模态分解数(k)的最优取值问题,借此提高特征提取精度,减少提取时间,最后再利用 VMD 提取扬声器响应信号的特征;在分
类网络方面,用 CNN-GRU 网络来进行扬声器异常声分类,以 CNN 为基础特征提取网络,再用 GRU 网络进行更深层特征提取,
达到提高扬声器平均分类准确率的目标。 试验结果表明,经 SSA-VMD 模型优化参数后,VMD 可以更有效提取特征,且分解时
间缩短 59. 8%;CNN-GRU 模型具有更高和更稳定的识别率,其平均分类准确率为 99. 2%。 |
英文摘要: |
In order to improve the average accuracy of loudspeaker abnormal sound classification, a convolutional neural network plus
gated current unit (CNN-GRU) and sparrow search algorithm optimization variational modal decomposition ( SSA-VMD) model was
proposed to classify loudspeaker abnormal sound. In the aspect of feature extraction, the SSA-VMD model was used to determine the
optimal value of the second penalty factor (α) and modal decomposition number (k) in VMD, so as to improve the accuracy of feature
extraction and reduce the extraction time. Finally, the VMD was used to extract the characteristics of the loudspeaker response signal. In
terms of classification network, the CNN-GRU network was used to classify the abnormal sound of loudspeakers, the CNN-based feature
extraction network was used, and the GRU network was used for deeper feature extraction to achieve the goal of improving the average
classification accuracy of loudspeakers. The experimental results show that after optimizing the parameters of SSA-VMD model, VMD can
extract features more effectively, and the decomposition time was reduced by 59. 8%. The CNN-GRU model has a higher and more stable
recognition rate, with an average classification accuracy of 99. 2%. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|