刘凌峰,陈晓雷,仇国庆,刘 平,任小红,陈家全.多影响因素下混凝土浑浆浓度智能模糊监测[J].电子测量与仪器学报,2023,37(3):121-131
多影响因素下混凝土浑浆浓度智能模糊监测
Intelligent fuzzy monitoring of concrete slurry concentration under multiple influence factors
  
DOI:
中文关键词:  商品混凝土  浑浆浓度  多影响因素  监测周期  模糊决策
英文关键词:commercial concrete  muddy slurry concentration  multiple influence factors  monitoring cycle  fuzzy decision
基金项目:国家自然科学基金(61803060)项目资助
作者单位
刘凌峰 1. 重庆邮电大学自动化学院 
陈晓雷 1. 重庆邮电大学自动化学院 
仇国庆 1. 重庆邮电大学自动化学院 
刘 平 1. 重庆邮电大学自动化学院 
任小红 2. 重庆永固新型建材有限公司 
陈家全 2. 重庆永固新型建材有限公司 
AuthorInstitution
Liu Lingfeng 1. School of Automation, Chongqing University of Posts and Telecommunications 
Chen Xiaolei 1. School of Automation, Chongqing University of Posts and Telecommunications 
Qiu Guoqing 1. School of Automation, Chongqing University of Posts and Telecommunications 
Liu Ping 1. School of Automation, Chongqing University of Posts and Telecommunications 
Ren Xiaohong 2. Chongqing Yonggu New Building Materials Co. , Ltd. 
Chen Jiaquan 2. Chongqing Yonggu New Building Materials Co. , Ltd. 
摘要点击次数: 857
全文下载次数: 897
中文摘要:
      本文提出了一种考虑多影响因素的混凝土浑浆浓度智能模糊监测算法。 首先,分析了影响商品混凝土浑浆浓度监测 周期的 4 种因素,包括生产计划、交通限制、降水量以及气温并进行了函数描述;其次,结合模糊理论建立影响因素的模糊论域 集并根据专家打分法进行权重设定;然后,分别设计了影响因素的梯形(半梯形)隶属度函数;最后,以模糊理论为基础给出了 浑浆浓度监测周期计算公式。 某厂搅拌站实验平台测试结果表明,相较于等间隔自动监测,所提出的算法能够自适应调整监测 周期,在满足监测需求同时有效减少浓度传感器使用时长达 16. 7%,显示出研究算法的实际应用价值。
英文摘要:
      An intelligent fuzzy monitoring algorithm for concrete slurry concentration considering multiple influencing factors is proposed. Firstly, the influence factors, including production plan, traffic restriction, precipitation and temperature, which will affect the monitoring cycle of the muddy commercial concrete concentration, are analyzed and described with mathematical functions. Secondly, the fuzzy domain set of four factors is established by combining the fuzzy theory with the expert scoring weight. Accordingly, the trapezoid (semi-trapezoid) membership functions of the influence factors are designed respectively. Finally, a fuzzy decision calculation formula for the slurry concentration monitoring cycle is given based on fuzzy theory. The test results of a stirring station plant experimental platform show that the proposed algorithm can adaptively decide the monitoring period. Result analysis indicates that the proposed method can meet the monitoring requirements and effectively reduce the working time of concentration sensor by 16. 7% when compared with other automatic monitoring method, revealing the practical application value of the proposed algorithm.
查看全文  查看/发表评论  下载PDF阅读器