宫 倩,别必龙,范新南,史朋飞,黄伟盛,辛元雪.基于关键点检测的指针仪表读数算法[J].电子测量与仪器学报,2023,37(3):66-73
基于关键点检测的指针仪表读数算法
Pointer meter reading algorithm based on key point detection
  
DOI:
中文关键词:  深度学习  关键点检测  指针仪表读数  角度法
英文关键词:deep learning  keypoint detection  pointer meter reading  angle method
基金项目:江苏省输配电装备技术重点实验室开放研究基金(2021JSSPD03)项目资助
作者单位
宫 倩 1. 河海大学物联网工程学院 
别必龙 2. 宁波市轨道交通集团有限公司智慧运营分公司 
范新南 1. 河海大学物联网工程学院,3. 江苏省输配电装备技术重点实验室 
史朋飞 1. 河海大学物联网工程学院,3. 江苏省输配电装备技术重点实验室 
黄伟盛 1. 河海大学物联网工程学院 
辛元雪 1. 河海大学物联网工程学院 
AuthorInstitution
Gong Qian 1. College of Internet of Things Engineering, Hohai University 
Bie Bilong 2. Smart Operations Branch of Ningbo Urban Rail Transport Group Ltd 
Fan Xinnan 1. College of Internet of Things Engineering, Hohai University,3. Jiangsu Key Laboratory of Power Transmission & Distribution Equipment Technology 
Shi Pengfei 1. College of Internet of Things Engineering, Hohai University,3. Jiangsu Key Laboratory of Power Transmission & Distribution Equipment Technology 
Huang Weisheng 1. College of Internet of Things Engineering, Hohai University 
Xin Yuanxue 1. College of Internet of Things Engineering, Hohai University 
摘要点击次数: 1249
全文下载次数: 1335
中文摘要:
      通过摄像头实现指针式仪表自动读数时易受复杂环境、摄像头不同角度等因素影响,而且在实际的应用中难以均衡检 测速度和检测精度,为此,文章提出一种基于关键点检测的指针仪表读数算法。 以 ResNet18 为主干网络,摒弃了最后两个阶段 的残差块以及之后的全连接层,并针对指针仪表表盘的特点设计了一个轻量级特征融合网络,同时引入提高模型性能的姿态修 正机(pose refine machine, PRM)。 最后利用得到的表盘圆心、零刻度线、当前指针刻度 3 个关键点信息,通过角度法完成读数 计算。 实验结果表明,本文算法读数误差仅为 0. 506%,速度可达 53 fps,相比于传统算法具有较高的精确度;相比于其他同类 算法,在拥有更少参数量与运算复杂度的情况下,仍能实现对指针关键点的高准确度预测,充分证明所提算法的有效性。
英文摘要:
      The automatic reading of pointer instrument by camera is easily affected by complex environment, different camera angles and other factors, and it is difficult to balance the detection speed and detection accuracy in practical applications. Therefore, this paper proposes a pointer instrument reading algorithm based on key point detection. ResNet18 is used as the backbone network, the residual blocks in the last two stages and subsequent fully connected layers are abandoned, and a lightweight feature fusion network is designed according to the characteristics of the pointer meter panel, while introducing a pose refine machine ( PRM) that improves model performance. Finally, using the obtained three key point information of the dial circle center, the zero scale line, and the current pointer scale, the reading calculation is completed by the angle method. The experimental results show that, the reading error of the algorithm in this paper is only 0. 506%, and the speed can reach 53 frames/ second, which is more accurate than the traditional algorithm; compared with other similar algorithms, the proposed algorithm can still achieve high accuracy prediction of pointer key points with fewer parameters and computational complexity, fully proving the effectiveness of the proposed algorithm.
查看全文  查看/发表评论  下载PDF阅读器