邓有为,李 刚,辛 怡,张生鹏,郝翊杰.隧道围岩沉降自适应实时识别及测量[J].电子测量与仪器学报,2023,37(2):236-243
隧道围岩沉降自适应实时识别及测量
Adaptive real-time recognition and measurement of tunnel rock settlement
  
DOI:
中文关键词:  隧道围岩  沉降监测  目标检测  注意力机制
英文关键词:tunnel rock  settlement monitoring  object detection  attention mechanism
基金项目:广西重点研发计划(桂科 AB20159032)、陕西省重点研发计划项目(2020ZDLGY09-03)、广西新恒通高速公路有限公司技术合作项目(XHT-KXB-2021-006)资助
作者单位
邓有为 1. 长安大学电子与控制工程学院 
李 刚 2. 长安大学能源与电气工程学院 
辛 怡 1. 长安大学电子与控制工程学院 
张生鹏 1. 长安大学电子与控制工程学院 
郝翊杰 1. 长安大学电子与控制工程学院 
AuthorInstitution
Deng Youwei 1. School of Electronic and Control Engineering, Chang′an University 
Li Gang 2. School of Energy and Electrical Engineering, Chang′an University 
Xin Yi 1. School of Electronic and Control Engineering, Chang′an University 
Zhang Shengpeng 1. School of Electronic and Control Engineering, Chang′an University 
Hao Yijie 1. School of Electronic and Control Engineering, Chang′an University 
摘要点击次数: 1047
全文下载次数: 1081
中文摘要:
      针对传统隧道围岩沉降监测方法鲁棒性较差、难以及时有效的监测隧道围岩沉降值的问题,提出将坐标注意力结合目 标检测算法的隧道围岩沉降自适应识别测量算法。 利用工业相机拍摄不同环境靶标图像建立数据集,训练具有坐标注意力的 目标检测模型,在测试集中验证模型预测精度为 97. 9%。 使用图像中靶标的数字以及 LED 灯点的像素坐标标定测量算法模型 并计算沉降值。 结果表明在 25 m 范围内测量误差小于 1 cm,在 10 m 范围内的靶标测量误差小于 5 mm。
英文摘要:
      Aiming at the problems of poor robustness and are difficult to monitor the settlement value of tunnel timely and effectively. An adaptive recognition and measurement algorithm of tunnel settlement is proposed by combining coordinate attention with object detection algorithm. Using industrial camera to get object images in different environment to build datasets, then training object detection model with coordinate attention, prediction accuracy of the model is 97. 9% in the test sets. Using the target figures and LED lights of the pixel coordinates in images to do the camera calibration and calculate settlement value. The results show that the measurement error of tunnel surrounding rocks is less than 1 centimeter within 25 meters, less than 5 millimeters within 10 meters.
查看全文  查看/发表评论  下载PDF阅读器