袁正峰,郭兴众,花晓飞.基于改进的 AEKF 铅酸电池 SOC 在线估计[J].电子测量与仪器学报,2023,37(2):228-235
基于改进的 AEKF 铅酸电池 SOC 在线估计
Online SOC estimation based on improved AEKF lead-acid battery
  
DOI:
中文关键词:  铅酸电池  SOC 估计  自适应扩展卡尔曼滤波  协方差匹配  误差新息分布
英文关键词:lead-acid battery  SOC estimation  adaptive extended Kalman filter  covariance matching  error information distribution
基金项目:国家基金区域创新发展联合基金项目(U21A20146)资助
作者单位
袁正峰 1. 安徽工程大学电气工程学院,2. 高端装备先进感知与智能控制教育部重点实验室 
郭兴众 1. 安徽工程大学电气工程学院,2. 高端装备先进感知与智能控制教育部重点实验室 
花晓飞 3. 奇瑞汽车股份有限公司 
AuthorInstitution
Yuan Zhengfeng 1. School of Electrical Engineering, Anhui Polytechnic University,2. Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education 
Guo Xingzhong 1. School of Electrical Engineering, Anhui Polytechnic University,2. Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education 
Hua Xiaofei 3. Chery Automobile Co. , Ltd. 
摘要点击次数: 510
全文下载次数: 998
中文摘要:
      为了提高铅酸电池在随机工况下荷电状态(SOC)估计精度,减小误差变化对估计精度的影响。 针对自适应扩展卡尔曼 滤波中误差新息序列长度固定选取的局限性,本文提出一种改进的自适应扩展卡尔曼滤波算法估计 SOC。 通过似然估计来监 测协方差匹配算法中的误差新息序列分布变化时刻,根据误差新息的分布变化来自适应调整新息序列长度,进而降低估计 SOC 时的误差。 首先通过带遗忘因子的递推最小二乘法(FFRLS)辨识获得等效模型参数,其模型平均误差电压为 13. 63 mV,然后 在随机工况实验下发现,改进后的算法在估计 SOC 时的 RMSE 和 MAE 性能上精度分别提高了 14. 44%和 17. 26%,结果表明改 进后的算法拥有更好的稳定性和精度。
英文摘要:
      In order to improve the state of charge (SOC) estimation accuracy of lead-acid battery under random conditions, reduce the influence of error variation on estimation accuracy. Aiming at the limitation of fixed length selection of error innovation sequence in adaptive extended Kalman filter, an improved adaptive extended Kalman filter algorithm is proposed to estimate SOC. The likelihood estimation is used to monitor the distribution change time of the error innovation sequence in the covariance matching algorithm, and the length of the innovation sequence is adaptively adjusted according to the distribution change of the error innovation, thereby reducing the error when estimating SOC. Firstly, the equivalent model parameters are identified by the recursive least squares method with forgetting factor ( FFRLS ), the average error voltage of the model is 13. 63 mV. Then, in the random condition experiment, it is found that the improved algorithm improves the accuracy of RMSE and MAE performance by 14. 44% and 17. 26% respectively when estimating SOC. The results show that the improved algorithm has better stability and accuracy.
查看全文  查看/发表评论  下载PDF阅读器