余联想,郑明魁,欧文君,王占宝.多传感器融合的移动机器人室外激光 SLAM 算法优化与系统实现[J].电子测量与仪器学报,2023,37(2):48-55
多传感器融合的移动机器人室外激光 SLAM 算法优化与系统实现
Optimization and system implement of outdoor lidar SLAMalgorithm for mobile robots based on multi-sensor fusion
  
DOI:
中文关键词:  移动机器人  激光 SLAM  多传感器融合  LOAM
英文关键词:mobile robots  lidar SLAM  multi-sensor fusion  LOAM
基金项目:福建省自然科学基金计划(2020J01466)、中国福建光电信息科学与技术创新实验室(闽都创新实验室)项目(2021ZR151)、国家自然科学基金(61902071)、2020 年福建省高等学校科技创新团队(产业化专项)项目资助
作者单位
余联想 1. 福州大学先进制造学院 
郑明魁 1. 福州大学先进制造学院,2. 福州大学物理与信息工程学院 
欧文君 2. 福州大学物理与信息工程学院 
王占宝 1. 福州大学先进制造学院 
AuthorInstitution
Yu Lianxiang 1. School of Advanced Manufacturing, Fuzhou University 
Zheng Mingkui 1. School of Advanced Manufacturing, Fuzhou University,2. College of Physics and Information Engineering, Fuzhou University 
Ou Wenjun 2. College of Physics and Information Engineering, Fuzhou University 
Wang Zhanbao 1. School of Advanced Manufacturing, Fuzhou University 
摘要点击次数: 755
全文下载次数: 1636
中文摘要:
      针对移动机器人室外环境开阔场景大范围建图时,激光雷达里程计位姿计算不准确从而导致 SLAM 算法精度下降等问 题,设计了一种基于多传感器融合的 SLAM 优化算法。 算法上,通过前端里程计优化提升 SLAM 算法的可靠性,将适用于室外 的 GNSS 等传感器信息与激光里程计融合,在技术上实现了扩展卡尔曼滤波的轻量化并将其嵌入于 LOAM 算法架构中,在尽可 能不增加资源负担的情况下对前端里程计进行改进;在优化算法基础上,搭建了实际移动机器人平台并移植算法,实现了可供 参考的多传感器融合硬件方案与扩展卡尔曼滤波在实际工程中处理多传感器数据的方法。 真实场景下的实验结果表明,在增 加了里程计运算量后算法仍能稳定保持 10 Hz 的室外建图,在复杂开阔环境与低成本条件下具有可靠性与可行性。
英文摘要:
      Aiming at the problem that the inaccurate pose calculation of the lidar odometry when mobile robots build the map in the outdoor open environment, which will make the accuracy of the simultaneous SLAM algorithm drops, an optimized SLAM algorithm based on multi-sensor fusion is designed. In terms of algorithm, the reliability of the SLAM algorithm is improved by optimizing the front-end odometry, the data of the lidar odometry is integrated with the data of several sensors which are suitable for outdoor use, such as GNSS, we achieve the lightweight of the extended Kalman filter and embed it in the LOAM algorithm technically, and improve the lidar odometry without increasing computing resource as much as possible. Based on the optimization algorithm, an actual mobile robot platform is built and the algorithm has been transplanted on it, the hardware solution of multi-sensor fusion and the method of processing extended Kalman filter in practical engineering are realized. The experimental results in real scenes show that the algorithm can be stably maintained at 10 Hz outdoor mapping after increasing the odometry calculation, and it is reliable and feasible in complex open environment and lowcost conditions in real scenes.
查看全文  查看/发表评论  下载PDF阅读器