郝 琨,邓晁硕,赵 璐,刘永磊.基于区域搜索粒子群算法的机器人路径规划[J].电子测量与仪器学报,2022,36(12):126-135
基于区域搜索粒子群算法的机器人路径规划
Robot path planning based on region search particle swarm optimization
  
DOI:
中文关键词:  路径规划  粒子群算法  区域搜索  可变算子  动态避障
英文关键词:path planning  particle swarm optimization (PSO)  regional search  variable operator  dynamic obstacle avoidance
基金项目:国家自然科学基金(61902273)项目资助
作者单位
郝 琨 1.天津城建大学计算机与信息工程学院 
邓晁硕 1.天津城建大学计算机与信息工程学院 
赵 璐 1.天津城建大学计算机与信息工程学院 
刘永磊 1.天津城建大学计算机与信息工程学院 
AuthorInstitution
Hao Kun 1.School of Computer and Information Engineering, Tianjin Chengjian University 
Deng Chaoshuo 1.School of Computer and Information Engineering, Tianjin Chengjian University 
Zhao Lu 1.School of Computer and Information Engineering, Tianjin Chengjian University 
Liu Yonglei 1.School of Computer and Information Engineering, Tianjin Chengjian University 
摘要点击次数: 1153
全文下载次数: 1383
中文摘要:
      针对粒子群算法应用于移动机器人路径规划时存在的易早熟、易陷入局部最优等问题,提出一种基于区域搜索的自适 应粒子群(region search-adaptive particle swarm optimization algorithm,RS-APSO)路径规划方法。 首先,通过区域搜索算法对原始 地图进行预处理,减少地图中的无效信息。 其次,提出两种可变算子对惯性权重因子进行调节,对加速因子进行自适应改进,增 强算法不同时期的搜索能力,利用新的加速因子使粒子快速摆脱较差区域。 最后通过动态避障策略,使机器人可以安全规避移 动障碍物。 仿真结果表明,RS-APSO 算法相较于 PSO 算法,平均运行时间降低了 30. 3%,平均迭代次数降低了 43. 9%,在动态 环境中也能生成安全路径。
英文摘要:
      Aiming at the problems of particle swarm optimization in mobile robot path planning, such as precocity and local optimum, a path planning method based on region search-adaptive particle swarm optimization algorithm (RS-APSO) is proposed. Firstly, the region search algorithm is used to preprocess the original map to reduce invalid information in the map. Secondly, two variable operators are proposed to adjust the inertia weight factor and improve the acceleration factor adaptively to enhance the search ability of the algorithm in different periods. The new acceleration factor is used to remove the bad region quickly from the particle. Finally, the robot can safely avoid moving obstacles through dynamic obstacle avoidance strategy. Simulation results show that compared with PSO algorithm, the average running time of RS-APSO algorithm is reduced by 30. 3%, the average number of iterations is reduced by 43. 9%, and can also generate safe path in dynamic environment.
查看全文  查看/发表评论  下载PDF阅读器