刘 杰,曹 静,赵 昕.基于 OOB-GWO-SVR 的风电机组齿轮箱故障预警[J].电子测量与仪器学报,2022,36(12):97-105
基于 OOB-GWO-SVR 的风电机组齿轮箱故障预警
Wind turbine gearbox fault warning based on OOB-GWO-SVR
  
DOI:
中文关键词:  风电机组  齿轮箱  故障预警  特征提取  智能算法  支持向量回归
英文关键词:wind turbines  gearbox  fault warning  feature extraction  intelligent algorithms  SVR
基金项目:辽宁省教育厅(LQGD2020016)项目资助
作者单位
刘 杰 1.沈阳工业大学机械工程学院 
曹 静 1.沈阳工业大学机械工程学院 
赵 昕 1.沈阳工业大学机械工程学院 
AuthorInstitution
Liu Jie 1.School of Mechanical Engineering, Shenyang University of Technology 
Cao Jing 1.School of Mechanical Engineering, Shenyang University of Technology 
Zhao Xin 1.School of Mechanical Engineering, Shenyang University of Technology 
摘要点击次数: 948
全文下载次数: 1171
中文摘要:
      针对风电机组齿轮箱超温出现的故障问题,提出了基于改进参数优化机器学习算法的风电机组齿轮箱故障预警模型。 首先,通过随机森林袋外估计确定特征变量,并采用滑动平滑滤波对输入变量进行滤波处理。 其次,构建灰狼算法优化支持向 量回归模型,根据最优模型输出的偏差值确定状态识别指标。 最后,通过时移滑动窗口设置阈值范围,当状态识别指标超出阈 值范围之外时立即报警。 实验结果表明,该模型能提前 87 min 对风电机组齿轮箱温度异常发出故障预警,并且预警效果优于 距离相关系数-GWO-SVR 模型、Pearson-GWO-SVR 模型和 OOB-SVR 模型。
英文摘要:
      Aiming at the fault problem of wind turbine gearbox overtemperature, a fault early warning model of wind turbine gearbox based on improved parameter optimization machine learning algorithm is proposed. Firstly, the characteristic variables are determined by random out-of-the-pocket estimation, and the input variables are filtered by sliding smoothing filtering. Secondly, the gray wolf algorithm optimization support vector regression model is constructed, and the state identification index is determined according to the residual value of the optimal model output. Finally, the threshold range is set by the time-lapse sliding window, and the alarm is immediately issued when the status identification indicator exceeds the threshold range. Experimental results show that the model can issue a fault warning for the temperature abnormality of the wind turbine gearbox 87 minutes in advance, and the early warning effect is better than that of the distance correlation coefficient-GWO-SVR model, Pearson-GWO-SVR model and OOB-SVR model.
查看全文  查看/发表评论  下载PDF阅读器