熊 磊,王凤随,钱亚萍.基于特征融合的自适应多尺度无锚框目标检测算法[J].电子测量与仪器学报,2022,36(11):236-244 |
基于特征融合的自适应多尺度无锚框目标检测算法 |
Adaptive multi-scale anchor-free target detectionalgorithm based on feature fusion |
|
DOI: |
中文关键词: 目标检测 无锚框 CenterNet 空洞卷积 特征融合 注意力机制 |
英文关键词:target detection anchor-free CenterNet dilated convolution feature fusion attention mechanism |
基金项目:安徽省自然科学基金(2108085MF197,1708085MF154)、安徽高校省级自然科学研究重点项目(KJ2019A0162)、检测技术与节能装置安徽省重点实验室开放基金(DTESD2020B02)、安徽工程大学国家自然科学基金预研项目(Xjky2022040)、安徽高校研究生科学研究项目(YJS20210448,YJS20210449)资助 |
|
Author | Institution |
Xiong Lei | 1. School of Electrical Engineering, Anhui Polytechnic University,2. Anhui Key Laboratory of Detection Technology and Energy Saving Devices,3. Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education |
Wang Fengsui | 1. School of Electrical Engineering, Anhui Polytechnic University,2. Anhui Key Laboratory of Detection Technology and Energy Saving Devices,3. Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education |
Qian Yaping | 1. School of Electrical Engineering, Anhui Polytechnic University,2. Anhui Key Laboratory of Detection Technology and Energy Saving Devices,3. Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education |
|
摘要点击次数: 970 |
全文下载次数: 1102 |
中文摘要: |
为了提高 CenterNet 无锚框目标检测网络的目标检测能力,提出一种基于注意力特征融合和多尺度特征提取网络的改
进 CenterNet 目标检测网络。 首先,为了提升网络对多尺度目标的表达能力,设计了自适应多尺度特征提取网络,利用空洞卷积
对特征图进行重采样获取多尺度特征信息,并在空间维度上进行融合;其次,为了更好地融合语义和尺度不一致的特征,提出了
一种基于通道局部注意力的特征融合模块,自适应地学习浅层特征和深层特征之间的融合权重,保留不同感受域的关键特征信
息。 最后,通过在 VOC 2007 测试集上对本文算法进行验证,实验结果表明,最终算法的检测精度达到 80. 94%,相较于基线算法
CenterNet 提升了 3. 82%,有效提升了无锚框目标检测算法的最终性能 |
英文摘要: |
In order to improve the target detection ability of CenterNet Ancor-free target detection network, an improved CenterNet target
detection network based on attention feature fusion and multi-scale feature extraction network was proposed. Firstly, in order to improve
the expression ability of the network for multi-scale targets, an adaptive multi-scale feature extraction network was designed. The feature
map is resampled by cavity convolution to obtain multi-scale feature information, and the fusion was carried out on the spatial dimension.
Secondly, in order to better integrate semantic and scale inconsistent features, a feature fusion module based on channel local attention
was proposed. the fusion weight between shallow features and deep features was adaptively learned, and the key feature information of
different perceptual domains was retained. Finally, the algorithm was verified on VOC 2007 test set. The experimental results showed
that the detection accuracy of the final algorithm reaches 80. 94%, which was 3. 82% higher than the baseline algorithm CenterNet, and
effectively improves the final performance of the Ancor-free target detection algorithm. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|