刘 琼,张 豹.基于 GBDT 算法的锂电池剩余使用寿命预测[J].电子测量与仪器学报,2022,36(10):166-172
基于 GBDT 算法的锂电池剩余使用寿命预测
Remaining useful lifetime prediction for lithiumbattery based on GBDT algorithm
  
DOI:
中文关键词:  GBDT  剩余使用寿命  锂电池  网格搜索  健康因子
英文关键词:GBDT  remaining useful lifetime  lithium battery  grid search  health index
基金项目:北京市自然科学基金面上项目(4202026,3212005)资助
作者单位
刘 琼 1.北京信息科技大学自动化学院 
张 豹 1.北京信息科技大学自动化学院 
AuthorInstitution
Liu Qiong 1.College of Automation, Beijing Information Science and Technology University 
Zhang Bao 1.College of Automation, Beijing Information Science and Technology University 
摘要点击次数: 721
全文下载次数: 1120
中文摘要:
      针对现有方法对锂电池剩余使用寿命(RUL)预测精度不高,模型训练时间较长的问题,提出一种基于梯度提升决策树 算法(GBDT)结合网格搜索法(GS)的预测模型。 首先,分析锂电池的充放电循环过程,确定电压、电流、温度为可用健康因子 (HI);其次,处理历史数据中的异常值,并均值化可用健康因子数据为特征输入;最后,通过 GBDT 算法建立锂电池剩余使用寿 命预测模型,并采用 GS 优化模型参数。 基于 NASA 锂电池容量衰减数据,实验结果表明,模型在 RMSE、MAE、MAPE 评价指标 上相对其他方法均提升了约 10 倍,并且可将锂电池剩余使用寿命预测误差率控制在 0. 05 以内,训练时间缩减至 4. 5 s。
英文摘要:
      To solve the problems of the existing remaining useful lifetime prediction methods for lithium battery with low prediction accuracy and long training time, a prediction model based on GBDT algorithm with grid search method is proposed. Firstly, analyze the charge-discharge cycle of lithium battery and select voltage, current and temperature as useful health index. Secondly, process the outliers of historical data and average useful health index data as feature input. Finally, establish the remaining useful lifetime prediction model for lithium battery by GBDT algorithm and optimize parameters by grid search method. Based on the capacity decay data of NASA lithium battery, the results show that the prediction model is superior to other methods about tenfold in RMSE, MAE, MAPE. The remaining useful lifetime prediction error is within 0. 05 and the training time reduces to 4. 5 s.
查看全文  查看/发表评论  下载PDF阅读器