李吉祥,倪旭昇,颜上取,邹 孝,钱盛友.基于 A-DResUnet 的语音增强方法[J].电子测量与仪器学报,2022,36(10):131-137
基于 A-DResUnet 的语音增强方法
Speech enhancement method based on A-DResUnet
  
DOI:
中文关键词:  语音增强  语谱图  模型输出目标  空洞卷积  卷积注意力模块
英文关键词:speech enhancement  spectrogram  the output target of the model  dilated convolution  convolution block attention module
基金项目:国家自然科学基金(11774088)项目资助
作者单位
李吉祥 1.湖南师范大学物理与电子科学学院 
倪旭昇 1.湖南师范大学物理与电子科学学院 
颜上取 1.湖南师范大学物理与电子科学学院 
邹 孝 1.湖南师范大学物理与电子科学学院 
钱盛友 1.湖南师范大学物理与电子科学学院 
AuthorInstitution
Li Jixiang 1.School of Physics and Electronics, Hunan Normal University 
Ni Xusheng 1.School of Physics and Electronics, Hunan Normal University 
Yan Shangqu 1.School of Physics and Electronics, Hunan Normal University 
Zou Xiao 1.School of Physics and Electronics, Hunan Normal University 
Qian Shengyou 1.School of Physics and Electronics, Hunan Normal University 
摘要点击次数: 774
全文下载次数: 1065
中文摘要:
      为了更精确地从语谱图中提取特征信息,提出了一种基于 A-DResUnet 的语音增强方法。 A-DResUnet 模型在 ResUnet 模型的基础上融合了空洞卷积,提升捕获语音上下文信息的能力;同时在编码器中加入卷积注意力模块(CBAM),提高对噪声 谱图特征的关注。 实验结果表明,与模型输出目标为干净语音语谱图相比,用噪声谱图作为模型输出目标时,该模型对未知噪 声具有更强的分离能力;相较 ResUnet 模型,提出的 A-DResUnet 模型减少了语音细节信息的损失;对比基于 DNN、GAN 的语音 增强方法,PESQ 平均提升了 22. 81%、33. 11%,STOI 平均提升了 9. 62%、15. 33%,为复杂环境下的语音增强提供了一种更有效 的方法。
英文摘要:
      In order to extract feature information from spectrogram more accurately, this paper proposes a speech enhancement method based on A-DResUnet ( attention-dilated ResUnet). The A-DResUnet model incorporates dilated convolution on the basis of ResUnet model to improve the ability to capture the contextual information of speech; at the same time, the convolution block attention module (CBAM) is added into the ResUnet encoder to improve the attention to the features of the noise spectrogram. The experimental results show that when the noise spectrum is used as the output target of the model, the model has a stronger ability to separate unknown noise than when the output target of the model is clean speech spectrum; compared with the ResUnet model, the proposed A-DResUnet model reduces the loss of speech detail information; compared with the speech enhancement methods based on DNN and GAN, PESQ increased by an average of 22. 81%, 33. 11%, STOI increased by an average of 9. 62%, 15. 33%, which is a more effective method for speech enhancement in complex environments.
查看全文  查看/发表评论  下载PDF阅读器