贾 凯,江 明,袁啸林,左桂忠,陈 跃.基于代价敏感型 LightGBM 的分子泵故障检测[J].电子测量与仪器学报,2022,36(10):55-64
基于代价敏感型 LightGBM 的分子泵故障检测
Fault detection of molecular pump based on cost-sensitive LightGBM
  
DOI:
中文关键词:  故障检测  磁悬浮分子泵  时频域分析  LightGBM  真空泄漏
英文关键词:fault detection  magnetic molecular pump  time-frequency domain analysis  LightGBM  vacuum leak
基金项目:国家自然科学基金(11905254,12105322)项目资助
作者单位
贾 凯 1. 安徽工程大学高端装备先进感知与智能控制教育部重点实验室,2. 安徽工程大学电气工程学院 
江 明 1. 安徽工程大学高端装备先进感知与智能控制教育部重点实验室,2. 安徽工程大学电气工程学院 
袁啸林 3. 中国科学院等离子体物理研究所 
左桂忠 3. 中国科学院等离子体物理研究所 
陈 跃 3. 中国科学院等离子体物理研究所 
AuthorInstitution
Jia Kai 1. Key Laboratory of Advanced Perception and Intelligence Control of High-end Equipment, Anhui Polytechnic University,2. School of Electrical Engineering, Anhui Polytechnic University 
Jiang Ming 1. Key Laboratory of Advanced Perception and Intelligence Control of High-end Equipment, Anhui Polytechnic University,2. School of Electrical Engineering, Anhui Polytechnic University 
Yuan Xiaolin 3. Institute of Plasma Physics, Chinese Academy of Science 
Zuo Guizhong 3. Institute of Plasma Physics, Chinese Academy of Science 
Chen Yue 3. Institute of Plasma Physics, Chinese Academy of Science 
摘要点击次数: 1427
全文下载次数: 1082
中文摘要:
      针对 EAST 全超导托卡马克装置的分子泵在数据集不平衡条件下导致的故障识别率低,模型容易过拟合等问题,提出 了一种基于时频域分析与改进的 LightGBM 算法相结合的方法。 首先,利用在 EAST 搭建的分子泵实验平台采集正常与故障的 振动数据,再对数据进行时频域特征提取。 其次,通过优化误分类代价,建立了代价敏感型 LightGBM 故障检测架构。 最后,将 得到的特征量作为代价敏感型 LightGBM 算法的输入,实现分子泵故障检测。 经实验验证,该方法的正确率达 99. 4%,同时,所 提出的方法在误报率和漏检率方面均优于传统分类算法与 LightGBM 算法。 此方法能够有效解决模型过拟合问题,实现对分子 泵故障的高准确率检测。
英文摘要:
      Aiming at the problem of low accuracy and overfitting in the unbalanced data of molecular pump of EAST all-superconducting tokamak device, a method of time-frequency analysis and improved LightGBM algorithm is proposed. Firstly, the normal and fault vibration data are collected by the molecular pump experimental platform. Then, extract the time and frequency domain features. Moreover, the cost-sensitive LightGBM fault detection framework was established by optimizing the misclassification cost function. Finally, the obtained features are used as the input of the cost-sensitive LightGBM algorithm for molecular pump fault detection. The experimental results show that the fault detection accuracy is 99. 4%. Meanwhile, the proposed method can consistently outperform traditional classifiers and LightGBM algorithms. This method can effectively solve the problem of overfitting and realize the detection of molecular pump fault with high accuracy.
查看全文  查看/发表评论  下载PDF阅读器