许志猛,张钐钐,陈良琴,孙北晨.基于时空域增强微多普勒谱图的行为识别方法[J].电子测量与仪器学报,2022,36(7):144-151
基于时空域增强微多普勒谱图的行为识别方法
Behavior recognition based on spatiotemporalenhanced micro-Doppler spectrogram
  
DOI:
中文关键词:  FMCW 雷达  智能监护  增强微多普勒特征  ConvLSTM 网络
英文关键词:FMCW radar  intelligent monitoring  enhanced micro-Doppler feature  ConvLSTM network
基金项目:国家自然科学基金(62071125)、福建省产学研合作项目(2019H6007)、福建省自然科学基金(2021J01581,2018J01805)、福州大学科研基金(GXRC 18083)项目资助
作者单位
许志猛 1.福州大学物理与信息工程学院 
张钐钐 1.福州大学物理与信息工程学院 
陈良琴 1.福州大学物理与信息工程学院 
孙北晨 1.福州大学物理与信息工程学院 
AuthorInstitution
Xu Zhimeng 1.College of Physics and Information Engineering, Fuzhou University 
Zhang Shanshan 1.College of Physics and Information Engineering, Fuzhou University 
Chen Liangqin 1.College of Physics and Information Engineering, Fuzhou University 
Sun Beichen 1.College of Physics and Information Engineering, Fuzhou University 
摘要点击次数: 929
全文下载次数: 1039
中文摘要:
      为缓解新冠疫情下医护人员短缺的现象,实现对住院患者的智能监护,本文基于调频连续波(FMCW)雷达提出了一种 新的基于时空域增强微多普勒谱图的行为识别方法。 首先,该方法对雷达获取的人体行为数据构造微多普勒谱图;然后利用一 种新的直方图均衡化和同态滤波相结合的时空域增强算法用于谱图信息的增强;最后采用一种改进的卷积长短时记忆网络 (ConvLSTM)提取谱图的时空域特征,并有效辨识喝水、跌倒等 7 种住院患者常见行为。 实验结果表明,基于本文方法对 7 种动 作的识别准确率能达到 94%,可以有效的监护患者的行为。
英文摘要:
      To alleviate the shortage of health care workers under the novel coronavirus pneumonia (COVID-19) and to achieve intelligent monitoring of inpatients, this paper proposes a new behavior recognition method based on enhanced micro-Doppler spectrograms in the space-time domain using frequency modulated continuous wave (FMCW) radar. Firstly, constructing a micro-Doppler spectrum of the human behavior acquired by the radar. Then, a new time-space domain enhancement algorithm combining histogram equalization and homomorphic filtering is used for the enhancement of spectrogram information. Finally, an improved convolutional long short term memory network (ConvLSTM) is proposed to extract the time and space features of the spectrum, which effectively identifies seven common inpatient behaviors, such as drinking and falling. The experimental results show that the method in this paper can effectively monitor the patient's behavior, and the recognition accuracy of the seven actions can reach 94%.
查看全文  查看/发表评论  下载PDF阅读器