王 琦,尹鑫铭,李晓捷,李秀艳,段晓杰,汪剑鸣,张荣华,王化祥.肺部电阻抗成像电极阵列优化方法研究[J].电子测量与仪器学报,2022,36(6):55-65
肺部电阻抗成像电极阵列优化方法研究
Optimization of electrode array for lung electrical impedance imaging
  
DOI:
中文关键词:  肺部电阻抗成像  人体三维胸腔模型  电极位置优化  深度学习
英文关键词:pulmonary electrical impedance imaging  three-dimensional chest model of human body  electrode position optimization  deep learning
基金项目:国家自然科学基金(61872269,61903273,62071328,62072335)、天津市自然科学基金(18JCYBJC85300)、天津市科技计划项目(19PTZWHZ00020,20YDTPJC00110)资助
作者单位
王 琦 1. 天津工业大学生命科学学院,2. 天津市光电检测技术与系统重点实验室 
尹鑫铭 1. 天津工业大学生命科学学院,2. 天津市光电检测技术与系统重点实验室 
李晓捷 1. 天津工业大学生命科学学院,2. 天津市光电检测技术与系统重点实验室 
李秀艳 2. 天津市光电检测技术与系统重点实验室,3. 天津工业大学电气与电子工程学院 
段晓杰 2. 天津市光电检测技术与系统重点实验室,3. 天津工业大学电气与电子工程学院 
汪剑鸣 2. 天津市光电检测技术与系统重点实验室 
张荣华 2. 天津市光电检测技术与系统重点实验室 
王化祥 4. 天津大学电气工程及自动化学院 
AuthorInstitution
Wang Qi 1. School of Life Sciences, Tiangong University,2. Tianjin Key Laboratory of Photoelectric Detection Technology and System 
Yin Xinming 1. School of Life Sciences, Tiangong University,2. Tianjin Key Laboratory of Photoelectric Detection Technology and System 
Li Xiaojie 1. School of Life Sciences, Tiangong University,2. Tianjin Key Laboratory of Photoelectric Detection Technology and System 
Li Xiuyan 2. Tianjin Key Laboratory of Photoelectric Detection Technology and System,3. School of Electronic and Information Engineering, Tianjin Polytechnic University 
Duan Xiaojie 2. Tianjin Key Laboratory of Photoelectric Detection Technology and System,3. School of Electronic and Information Engineering, Tianjin Polytechnic University 
Wang Jianming 2. Tianjin Key Laboratory of Photoelectric Detection Technology and System 
Zhang Ronghua 2. Tianjin Key Laboratory of Photoelectric Detection Technology and System 
Wang Huaxiang 4. School of Electrical Engineering and Automation, Tianjin University 
摘要点击次数: 600
全文下载次数: 990
中文摘要:
      肺部电阻抗层析成像(EIT)电极阵列的设计是影响系统性能与成像效果的关键因素之一,目前多在规则形状物场、等 间距分布的前提条件下对电极阵列进行优化,却并不适用于肺部不规则边界的情况。 本文提出基于深度学习的肺部电阻抗层 析成像电极阵列优化方法,以电极位置为优化目标,以重建图像相对误差、图像相关系数、敏感场分布的均匀性以及敏感场 Hessian 矩阵的条件数为网络输入,以阵列电极位置为网络输出,基于 DNN 网络构建优化模型。 实验结果表明,在呼气末和吸 气末两种状态下,与传统的电极阵列均匀分布方法相比,基于深度学习的肺部 EIT 电极阵列优化方法将重建图像相关系数 (image correlation coefficient,ICC) 分别提高了 33. 17%、33. 86%,结构相似度( structural similarity,SSIM) 分别提高了 14. 5%、 14. 39%,峰值信噪比(peak signal-to-noise ratio,PSNR)分别提高了 26. 3%、28. 27%。 因此可以得出结论,与传统方法相比基于深 度学习的 EIT 电极阵列优化方法更适用于肺部 EIT 成像。
英文摘要:
      The design of electrical impedance tomography (EIT) electrode array is one of the key factors affecting the performance and imaging effect of the system. At present, the electrode array is optimized under the premise of regular shape field and equal spacing distribution which is not suitable for irregular lung boundaries. In this paper, an optimization method of electrode array based on deep learning network is proposed for lung EIT. The optimization goal of the network is electrode position. The relative error of the reconstructed image, the image correlation coefficient, the distribution uniformity and the condition number of the Hessian matrix for the sensitive field are used as the network inputs. The positions of the electrodes are taken as the network output. The optimization model is constructed based on DNN network. The experimental results show that, for end-expiration and end-inspiration states, the ICC, SSIM and PSNR of images reconstructed based on measured data obtained from optimized electrode increased by 33. 17% and 33. 86%, 14. 5% and 14. 39%, 26. 3% and 28. 27%, respectively, compared with the traditional electrode array with equal-distance distribution. Therefore, it can be concluded that optimizing electrode positions for lung EIT using deep learning is more suitable than traditional methods.
查看全文  查看/发表评论  下载PDF阅读器