朱文昌,李振璧,姜媛媛.联合 VMD 与 ISSA-ELM 的电力电子电路软故障诊断[J].电子测量与仪器学报,2022,36(5):223-233
联合 VMD 与 ISSA-ELM 的电力电子电路软故障诊断
Combined VMD and ISSA-ELM for soft faultdiagnosis of power electronic circuits
  
DOI:
中文关键词:  变分模态分解  极限学习机  改进麻雀搜索算法  电路软故障诊断
英文关键词:variational modal decomposition  extreme learning machine  improved sparrow search algorithm  circuit soft fault diagnosis
基金项目:安徽省重点研究与开发计划(202104g01020012)、安徽理工大学环境友好材料与职业健康研究院研发专项基金(ALW2020YF18)项目资助
作者单位
朱文昌 1. 安徽理工大学电气与信息工程学院,2. 安徽理工大学环境友好材料与职业健康研究院(芜湖) 
李振璧 3. 亳州学院电子与电气工程系 
姜媛媛 1. 安徽理工大学电气与信息工程学院,2. 安徽理工大学环境友好材料与职业健康研究院(芜湖) 
AuthorInstitution
Zhu Wenchang 1. School of Electrical and Information Engineering, Anhui University of Science and Technology,2. Institute of Environment-Friendly Materials and Occupational Health, Anhui University of Science and Technology 
Li Zhenbi 3. Department of Electronics and Information Engineering,Bozhou University 
Jiang Yuanyuan 1. School of Electrical and Information Engineering, Anhui University of Science and Technology,2. Institute of Environment-Friendly Materials and Occupational Health, Anhui University of Science and Technology 
摘要点击次数: 815
全文下载次数: 1075
中文摘要:
      针对电力电子电路的软故障特征区分度差、不易诊断等问题,提出了变分模态分解(VMD)结合改进的麻雀搜索算法 (ISSA)优化极限学习机(ELM)的故障诊断方法。 首先,将采集的故障信号进行 VMD 分解成本征模态分量( IMF),提取线性重 构后 IMF 的 12 维时域参数作为故障诊断的特征向量。 其次为提高 ELM 在故障诊断中的精度,提出 ISSA 对 ELM 的参数进行 优化,建立 ISSA-ELM 分类模型。 ISSA 首先采用 Iterative 映射初始化种群,然后在发现者位置更新处引入自适应惯性权重因子, 最后在解的位置引入 Levy 变异算子进行扰动得到新解等 3 种策略改进,提高算法性能。 在 8 类基准函数测试中,ISSA 比另外 4 种智能算法的收敛速度和寻优精度均有提升,并且 VMD 结合 ISSA-ELM 在功率为 150 W Boost 电路软故障诊断中精度达到 99%以上。
英文摘要:
      To address the problems of poor differentiation of soft fault features of power electronic circuits and not easy to diagnose, a fault diagnosis method of variational modal decomposition ( VMD) combined with an improved sparrow search algorithm ( ISSA) optimized extreme learning machine (ELM) is proposed. Firstly, the acquired fault signals are decomposed into the intrinsic modal components (IMF) by VMD, and the twelve-dimensional time-domain parameters of the linearly reconstructed IMF are extracted as the feature vectors for fault diagnosis. Secondly, in order to improve the accuracy of ELM in fault diagnosis, ISSA is proposed to optimize the parameters of ELM and establish ISSA-ELM classification model. ISSA is improved by three strategies such as initializing the population with Iterative mapping, introducing adaptive inertia weight factor at the discoverer position update, and introducing levy variation operator to perturb at the solution position to get a new solution to improve the algorithm performance. In the 8-class benchmark function test, ISSA has improved the convergence speed and finding accuracy than the other 4 intelligent algorithms, and the accuracy of VMD combined with ISSA-ELM reaches more than 99% in the soft fault diagnosis of 150 W Boost circuit.
查看全文  查看/发表评论  下载PDF阅读器